
1 May 1999 Delphi Informant

May 1999, Volume 5, Number 5

Cover Art By: Darryl Dennis

ON THE COVER
5 The Template Method Pattern — Xavier Pacheco
The May issue begins with an in-depth discussion of application frameworks,
their relationship to patterns, and a pattern suited for their creation, the
Template Method pattern. In brief, Mr Pacheco provides us with a continuing
education of design patterns — with supporting examples you can put to
use in your applications.

FEATURES
13 Undocumented
From the Shell: Part II — Kevin J. Bluck and James Holderness
Messrs Bluck and Holderness return with more Win32 dialog boxes (e.g.
Find, Properties, etc.) provided as Delphi components. They also provide
an explicit description of the inner workings of the Windows shell.

19 Algorithms
Map Coloring — Rod Stephens
Mr Stephens presents two algorithms — four- and five-color — for col-
oring maps, or any surface with discrete areas that must be visually
unique. Demonstration programs are available for download, of course.

26 On the ’Net
An HTML Generator: Part I — Keith Wood
If you need to create HTML from Delphi, you’ll be very interested in Mr
Wood’s set of components that employ the interface object (available in
Delphi version 3 and higher) for a simpler, more object-oriented approach.

31 DBNavigator
Delphi Database Development: Part VIII — Cary Jensen, Ph.D.
After a comprehensive discussion of data validation, Dr Jensen provides an
in-depth demonstration of the four types of client-side data validation:
keystroke-level, field-level, record-level, and database-level.

DEPARTMENTS
2 Delphi Tools
4 Newsline
36 File | New by Alan C. Moore, Ph.D.

2 May 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

20/20 Software Releases softSENTRY 2.1

20/20 Software, Inc. released

softSENTRY 2.1, an enhanced
version of its trialware and
software protection tool that
works by injecting directly
into executable (.exe) files, or
by calling a dynamic-link
library (.dll) file.

Protected programs can query
internal softSENTRY data, such
as System ID, values of user
input strings, values of limitation
counters, and the active mode in
which the program is running.
Protected programs can also dis-
play a registration form at any
time. Enhanced formulas increase
the complexity and flexibility of
HyperAct Announces eAuth

Davis Business Systems an
password definitions.
User input strings,

such as “name” and
“serial number,” can be
used in password for-
mulas to ensure that
the correct registration
information must be
entered for the pass-
word to work. Version
2.1 also adds 99 new
operators to further
increase the difficulty of breaking
a password algorithm.

Additional security measures
have been incorporated to protect
against attacks on the “footprint”
softSENTRY puts on a computer.
or Help 3.10

d Psi Computer Consultants O
20/20 Software, Inc.
Price: US$249 for either 16- or 32-bit Lite
versions; US$695 for complete version
(includes 16- and 32-bit functionality).
Phone: (800) 735-2020
Web Site: http://www.twenty.com
HyperAct, Inc. announced
version 3.10 of eAuthor Help,
its template-based RAD author-
ing tool. eAuthor was designed
to provide a rich authoring
environment for large-scale Web
sites and HTML Help projects.
This release introduces new

features, such as WYSIWYG
editing, hard-copy documenta-
tion creation, XML document
creation, and the eAuthor SDK,
which allows eAuthor to be
extended with plug-ins, COM-
based templates, and more.

With the new ActiveScript
support, repetitive documenta-
tion creation tasks can be
scripted using JavaScript or
external application via
automation.

In addition, enhancements
were added to features available
before, such as an improved
raw-HTML editor, a faster
editing environment, improved
spell checker, thesaurus, drag-
and-drop capabilities, improved
documentation, and more.

HyperAct, Inc.
Price: US$250
Phone: (402) 891-8827
Web Site: http://www.hyperact.com
ffer BS/1 Small Business

Davis Business Systems Ltd.

and Psi Computer
Consultants Pty Ltd. have
developed BS/1 Small
Business, a suite of accounting
programs designed for use by
small- to medium-sized busi-
nesses. BS/1 is an ActiveX con-
trol that provides software
developers a cost-effective way
to include a fully functioning
accounting system in their
own custom application.

BS/1 Small Business ActiveX
can be applied in a wider
range of languages than a
native VCL. A developer can
use it for one client’s VB appli-
cation and for another client’s
Delphi application, without
purchasing two versions of the
same software.

Davis Business Systems Ltd./Psi
Computer Consultants Pty Ltd.
Price: From US$79 for a single-user license.
Phone: (604) 462-9007
Web Site: http://www.dbsonline.com

http://www.twenty.com
http://www.hyperact.com
http://www.dbsonline.com

3 May 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Realsoft Releases SofTrak

Realsoft Development

announced the release of SofTrak
(in beta version at press time), an
integrated system for customer
tracking, support logging, help-
desk management, invoicing,
licensing, registration coding,
version control, and more.

SofTrak was written with
Delphi 4 using native compo-
nents for Win95/98/NT4 and
has a Microsoft Outlook-style
interface. Databases are xBase-
MathTools Announces MID

Watergate Announces Acti

RightDoc Releases RightDo
compatible using the Advantage
engine. Client/server options are
available for larger networks.
Registration components are
ActiveX and native Delphi, and
registration codes use a secure
four-stage encryption.

SofTrak’s tracking features
include dual-pane Customer
Database and filtered Tracking
Database; auto date/time and
username stamping for each
entry; unlimited notes section
EVA

veX and CGI in PC-Doctor

c 1.0
for each entry; tracking of prod-
uct serial numbers and quantity
on hand; custom reports for ver-
sions, renewals, and invoices;
and more.

Realsoft Development
Price: SofTrak Lite (single user), US$249;
SofTrak Professional (up to five users),
US$495; additional discounts are available
for multiple users.
Phone: (800) 929-3991
Web Site: http://www.realsoftdev.com
MathTools Ltd. announced
MIDEVA, its scientific integrat-
ed development environment.
MIDEVA presents a complete
environment for developing and
running scientific applications.

MIDEVA includes an m-files
interpreter, syntax-highlighting
editor, source-level debugger,
optimizer, and online reference
guide. MIDEVA also provides
the ability to compile m-files
into executables,
Delphi/Visual Basic/Excel
DLLs, and Debug/Release
modes. It is compatible with
MATLAB 4.x and 5.

MathTools Ltd.
Price: Single commercial license, US$999;
academic license, US$299.
Phone: (212) 208-4476
Web Site: http://www.
mathtools.com
Watergate Software, Inc.
announced the integration of
ActiveX and CGI technologies
into its PC-Doctor line of diag-
nostic software products.

The PC-Doctor ActiveX con-
trol will allow PC-Doctor to
be used in conjunction with
Web-based applications by
enabling them to display PC-
Doctor diagnostic data. Web-
based applications can use
JavaScript or VBScript to com-
municate with PC-Doctor’s
diagnostic and system infor-
mation capabilities online in
real time. PC-Doctor CGI is
an HTTP server-callable pro-
gram that allows for a com-
mand line-driven, Web-based
interface to PC-Doctor.

PC-Doctor’s Modular Core
Technology contains over 300
test functions optimized for
implementation throughout
each stage of the product life
cycle. Each primary product —
PC-Doctor Factory, PC-Doctor
for Windows, PC-Doctor for
Windows NT, and PC-Doctor
Service Center — provides a
specific diagnostic application
of the core technology.
Watergate Software, Inc.
Price: Contact Watergate for pricing.
Phone: (510) 596-2080
Web Site: http://www.ws.com
RightDoc Co. announced
RightDoc 1.0, an XML-based
content management and pub-
lishing engine that creates per-
sonalized document content
from applications to view, print,
and generate HTML4, PDF,
and PostScript formats.

RightDoc provides for the
creation of XML documents in
Enterprise or Web server-based
Delphi, Visual Basic, Visual
C++, Visual J++, Excel, Access,
and others. It creates personal-
ized forms, reports, billing
statements, legal contracts, let-
ters and more.

With built-in variable text
merging, conditional formatting,
and conditional processing,
RightDoc is application data-
driven. Companies can create
sets of “Smart” documents, with
each document having the abili-
ty to alter itself based on appli-
cation data provided.

Form-based built-in editors
create and modify processing
tags, styles and style properties,
and XML entities.

RightDoc Co.
Price: US$249 per development seat
(royalty-free).
Phone: (509) 464-1059
Web Site: http://www.rightdoc.com
Linder Software and Albert’s
Ambry Announce LSPzip
Linder Software, in association

with Albert’s Ambry, has released
the latest version of LSPzip, a com-

pression library for developers
working in Delphi, C++Builder,
Clarion, Visual Basic, or Visual

C++ environments.
LSPzip comes with two com-

pression libraries: LSPack and
LSZip. The LSZip libraries are

compatible with the latest PKZIP
archive format.

LSPzip costs US$169 for a single-
user license. A trial version may be

downloaded from the Albert’s
Ambry Web site at

http://www.alberts.com/
authorpages/00013316/

prod_698.htm.

http://www.realsoftdev.com
http://www.mathtools.com
http://www.mathtools.com
http://www.rightdoc.com
http://www.ws.com
http://www.alberts.com/authorpages/00013316/prod_698.htm

4 May 1999 Delphi Informant

News
L I N E

May 1999

InterBase Releases InterBase 5.5 for SCO

Inprise Strengthens AS/400 Global Partnership with
SystemObjects
Scotts Valley, CA — InterBase
Software Corp. announced the
availability of InterBase 5.5 for
the Santa Cruz Operation (SCO)
UNIX OpenServer operating sys-
tem. InterBase 5.5 for SCO offers
performance improvements and
enhanced stability, delivering a
solution for SCO developers and
value added resellers (VARs).

InterBase 5.5 for SCO
includes version 1.5 of
InterClient, an all-Java JDBC
driver. InterClient 1.5 adds
direct international support for
user-specified character sets.

Stability in InterBase 5.5 has
HREF Presents Live eSemin

Inprise Creates Separate D
been improved by adding such
features as protection for online
metadata updates of Triggers and
Stored Procedures by the strength
of the InterBase 5.5 versioning
engine. User Defined Functions
(UDFs) have added safety fea-
tures in Windows, and the UDF
library has been expanded.
ars

ivisions

Oracle Expands Relationsh
VisiBroker CORBA
Performance enhancements
include more efficient memory
usage and a new multi-threaded
ODBC 3.0 driver that adds sup-
port for SQL-92 ROLES and
international character sets.

For more information on
InterBase, visit http://www.
interbase.com.
Amsterdam, Netherlands —
Inprise Corp. announced a
long-term, world-wide exclusive
licensing agreement with
SystemObjects Corp. to further
i

develop, support, and market
Inprise’s Windows-based visual
development tools for the IBM
AS/400 platform.

SystemObjects is a key Inprise
partner, having helped develop
Delphi/400 and
C++Builder/400. Under the
new agreement, SystemObjects
assumes the future development,
maintenance, and marketing of
Delphi/400 and
C++Builder/400 internationally.
Later this year, SystemObjects
plans a Java development solu-
tion for the AS/400 based on
Inprise’s JBuilder.

For more information on
SystemObjects, visit
http://www.systemobjects.com,
or call (800) 586-5516.
p with Inprise for
Santa Rosa, CA — HREF Tools
Corp. announced its new live
eSeminars using U-VU Network’s
Internet Conference Service
Software. U-VU is a built-with-
WebHub system that enables the
presenter to broadcast a live,
interactive presentation while par-
ticipants watch visual screens and
listen to an audio stream. Online
participants log in, see the slide
show, listen to the presenter, ask
questions by typing them in, and
chat (using text) with other users
before and after the presentation.

HREF is also partnering with
other Delphi developers who
want to use the U-VU technology
to create their own eSeminars.

The presentations run for
about an hour and focus on
topics of interest relating to
Web development using
HREF’s line of WebHub prod-
ucts and related utilities.

HREF has completed five pre-
sentations with attendees from
all over the world, including
the US, Brazil, Lithuania,
Mexico, Norway, and Australia.

HREF’s series “WebHub Tech
Talk Radio” brings technical con-
tent to developers every two
weeks. “WebHub Sizzle” presenta-
tions, for developers evaluating the
power and usability of WebHub,
also air on an ongoing basis.

For more information and a
complete schedule, visit
http://www.href.com/present.
Scotts Valley, CA — Inprise
Corp. announced it signed a
licensing agreement with Oracle
Corp. Under the terms of the
multi-year agreement, Oracle
has selected Inprise’s VisiBroker
as one of its worldwide stan-
dards for CORBA object request
broker (ORB) technology. As of
press time, VisiBroker has been
integrated into Oracle8i, Oracle
Application Server, and other
Oracle products.

Oracle8i extends Oracle’s tech-
nology leadership in the areas of
transaction processing, data ware-
housing, mobile computing, and
high-availability systems.
Scotts Valley, CA — In conjunc-
tion with its fiscal year 1998 and
fourth quarter earnings announce-
ment, Inprise Corp. announced a
new business structure with the
formation of two divisions:
Inprise and borland.com.

borland.com plans to become a
premier destination Web site that
will serve individual developers’
needs for a range of advanced
Internet products and technolo-
gies, including those from third
parties. The restructuring will
include a streamlining of facilities,
headcount, and product lines
designed to increase operating
efficiency. borland.com offerings
will include Borland Delphi,
C++Builder, JBuilder, and
InterBase.

Solutions offered by the
Inprise division will be sold
through its direct sales organiza-
tion and partner channel, and
will include Inprise Application
Server, JBuilder for AppServer,
AppCenter, VisiBroker, ITS and
Entera. The division will contin-
ue to expand its professional ser-
vice organization to provide
comprehensive integration con-
sulting and training capabilities
for the enterprise integration
marketplace.

Jim Weil, currently President
of Inprise subsidiary InterBase,
has been named President of
the Inprise division, which will
be headquartered in San
Mateo, CA. John Floisand,
Senior Vice President of world-
wide sales, has been appointed
President of borland.com,
which will remain in Scotts
Valley. Both division heads will
report to Delbert W. Yocam,
Inprise chairman and CEO.
SkyLine Tools Announces
the Programmer of

The Year Award
SkyLine Tools Imaging pre-

sented the Programmer of the
Year Award to Shelley

Emmerson, Imaging Technology
Expert for the Royal Canadian

Mounted Police.
Using the SkyLine Tools

Imaging Corporate Suite and
VideoLab Pro, Emmerson creat-

ed an application that could
input, store, and organize the
thousands of images, docu-

ments, and video footage result-
ing from the investigation of the
tragic 1998 Swissair Flight 111
crash, which claimed 225 lives
when the aircraft went down in
more than 200 feet of water
near Halifax, Nova Scotia.

Emmerson put the application
together in 12 hours.

Other tools used were Multi-
Edit from American Cybernetics,

InfoPower 4 from Woll2Woll,
InterBase 5 SQL relational data-
base from InterBase Software,

and Crystal Reports from Seagate
Software. A Windows NT work-
station was utilized as the appli-

cation server.

http://www.interbase.com
http://www.interbase.com
http://www.href.com/present
http://www.systemobjects.com

5 May 1999 Delphi Informant

On the Cover
Template Method / Frameworks / OOP

By Xavier Pacheco
The Template Method Pattern
Building a UI Application Framework

In the March, 1999 issue of Delphi Informant, we discussed the Singleton pattern. This
month, we’ll create a simple application framework using a commonly used pattern,

the Template Method. This article will present two concepts: designing a framework
around which you develop a user interface, and using patterns to accomplish this.
In the following section, I’ll explain the concept of
frameworks, what they are, and how they help us
in designing applications. I’ll also explain what
frameworks have to do with patterns. In this and
future articles, I’ll make reference to the book
Design Patterns: Elements of Reusable Object-
Oriented Software [Addison-Wesley, 1994] by
Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, otherwise known as the Gang
of Four (GoF).

OOP Frameworks
The GoF define a framework as “... a set of coop-
erating classes that make up a reusable design for a
specific class of software.” A framework defines
the constraints within which a product can be
constructed. In other words, frameworks define
the architecture or structure of the final product.
Although it might seem a bit restrictive, this is an
extremely beneficial practice to use in software
development. Developers need not focus on the
flow or structure of the user interface (UI), so they
can instead focus on specific functionality.

With a tool like Delphi, it’s easy to fall into the
trap of designing the UI without careful fore-
thought as to how it’s supposed to work. A typi-
cal UI may start out as a main form with a
menu. Later, a page control is added to separate
logical functionality. As the UI develops, more
functionality is added, removed, and moved into
separate forms. Typically, the layout and flow of
the UI isn’t decided upon until much later in
the development process. By first designing a
framework, one can reduce the amount of re-
coding and redesign that occurs during UI
development. A UI framework acts as a plug-in
mechanism to facilitate a more structured
approach to UI development.
So how do patterns and frameworks relate to one
another? A developer uses patterns to build frame-
works for software. Patterns and frameworks aren’t
the same; the GoF have defined three major dif-
ferences. Design patterns are:

more abstract than frameworks;
smaller architectural elements than frame-
works; and
less specialized than frameworks.

The first difference emphasizes that patterns
focus more on abstractions or methodologies.
Although you can create a concrete framework
that structures a specific domain, the same isn’t
true for a pattern. Frameworks exist in actual
code that may be copied and reused in different
applications. The same isn’t true for patterns, as
they must be implemented each time they’re
used. As for patterns, it’s the pattern that’s
reused, not the implementation of that pattern.
Framework implementations, on the other
hand, may be reused.

The second difference emphasizes how patterns are
smaller in size. A framework may be composed of
many patterns, whereas a pattern would never be
composed of frameworks. A pattern is more like an
algorithm used in a framework, and the framework
is what defines the architecture of a system.

The third difference emphasizes how frame-
works are written to a specific application
domain. For example, you might define a
framework for a graphics manipulation applica-
tion. There isn’t a pattern that specifically
addresses this domain, although you might use
a pattern or combination thereof to construct
this specific framework. The key is that the

On the Cover
framework would only be useful for this type of application,
whereas the patterns used to construct the framework may be
used on any type of application.

The Template Method Pattern
As the GoF state in Design Patterns, a Template Method pattern is
intended to: “Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the algo-
rithm’s structure.”

The Template Method is probably the most widely used pattern
by Delphi developers. It’s based on the concept of inheritance; in
fact, you’ll see examples of the Template Method strewn through-
out the VCL code. Figure 1 depicts the structure of the Template
Method pattern.

Template Method vs. Abstract Class
The Template Method pattern and abstract classes aren’t one in the
same. An abstract class provides the declaration of a class interface
while deferring its implementation to its subclasses. Therefore, the
various implementations of that abstract class provide the ability to
create different behaviors for the client.

A Template Method accomplishes the same at the method/algorith-
mic level. A Template Method is defined and implemented in an
abstract class to provide structure for an action performed by that
class. All descendant classes (concrete classes) override and imple-
ment smaller pieces — abstract methods — of the class to help give
it identity. Therefore, a Template Method is actually part of an
abstract class even though it’s usually fully defined and implement-
ed. Look at it as a way to extend the control in which you attempt
to define an abstract class. Ideally, the Template Method isn’t
declared as virtual or dynamic. The purpose of this method is to
establish a consistent process among the descendant classes. For
example, a Template Method might look something like this:

procedure TSomeObject.TemplateMethod;

var
i: Integer;

begin
PrimitiveMethod1;

for I := 0 to 10 do
PrimitiveMethod2;

PrimitiveMethod1;

end;

In this example, the TemplateMethod method defines a simple tem-
plate by which two primitive methods are invoked. The implemen-
tations of these primitive methods may vary so that they perform
entirely different actions. For this to work, we must use object
inheritance to allow for the varying behaviors for the primitive
methods. Therefore, it can be assumed that the Template Method
pattern is dependent on abstract classes, i.e. they go hand in hand.

Method Types
We’ve nailed down the issue of Template Methods being routines
with behaviors that change internally without the client knowing
of this change. Because this method is contained in a class, it fol-
lows we must provide an inheritance model to allow us to create
different subclasses to which we provide the differing method
behaviors. I’ll focus less on the Template Method itself, and more
on the abstract class used to implement a Template Method. In
fact, because this is a technique so common in OOP development,
6 May 1999 Delphi Informant
I’m surprised we don’t see Template Class or Abstract Class pre-
sented as discrete patterns.

Another very good book on patterns is The Design Patterns Smalltalk
Companion by Kyle Brown, Bobby Woolf, and Sherman R. Alpert
[Addison-Wesley, 1998]. It presents four types of methods that
might appear in an abstract class: template, concrete, abstract, and
hook. In Delphi, I’d suggest a fifth type, which I’ll refer to as the
event (see Figure 2).

Implementing Application Frameworks
In my earlier description of the initial approach to UI design, I
described the typical process that a developer might use to put togeth-
er the UI. Although this might be fine for a small application, or an
application being developed by one person, it presents a problem with
applications being developed as functional pieces. It’s also a problem
where different people are working on different parts of the UI.

A better approach would be if you separated the UI/functional
pieces and brought them together later — during a build process —
after developers have finished developing their parts. This technique
is made possible by using a framework. The code that programmers
write must adhere to that framework.

The example in Figure 3 depicts the modularity of a framework.
The Shell Application owns a View Manager. The View Manager

AbstractClass

TemplateMethod
PrimitiveMethod1
PrimitiveMethod2

Primitive Method1

PrimitiveMethod2

ConcreteClassA

PrimitiveMethod1
PrimitiveMethod2

ConcreteClassB

PrimitiveMethod1
PrimitiveMethod2

Figure 1: The Template Method pattern structure.

Type Description

Template A combination of the remaining four methods forming
an algorithm. Subclasses typically don’t change this
method and simply override the methods they call.

Concrete A method hard-coded by the abstract class that
doesn’t get overridden by the subclasses. In Delphi,
this is a static method.

Abstract A method declared by, and implemented by, each
subclass. In Delphi, the keyword abstract is used to
define this type of method.

Hook A method that provides default functionality, and
that may be overridden by subclasses. In Delphi,
this is the virtual or dynamic method.

Event A pointer to a method. This method may be provided
by the client of the abstract class. It will be called if it
exists by the abstract class. When a method is provid-
ed to the method pointer (e.g. OnClick event proper-
ty) it’s referred to as an “event handler.” Component
writers will be familiar with this method type.

Figure 2: Method types in an abstract class.

ConcreteViewForm1 ConcreteViewForm2

TViewForm

View ManagerShell Application

1..1

1..1

Figure 3: An example UI framework.

On the Cover

procedure TWinControl.CreateWnd;

var
Params: TCreateParams;

TempClass: TWndClass;

ClassRegistered: Boolean;

begin
CreateParams(Params);

with Params do begin
// Code removed.
if not ClassRegistered or

(TempClass.lpfnWndProc <> @InitWndProc) then begin
// Code removed.

end;
// Code removed.
CreateWindowHandle(Params);

// Code removed.
end;

end;

Figure 4: Skeleton of the TWinControl.CreateWnd Template
Method.
is the intermediary between the Shell Application and each
TViewForm. TViewForm is an abstract class that defines the inter-
face with which the View Manager and Shell Application interact.
Developers create implementations of TViewForm that adhere to
the interface defined by TViewForm. Because each TViewForm
descendant is an independent form, it can be developed apart from
the Shell Application. When the functionality for a TViewForm is
complete, it’s incorporated with the main application.

Defining the Abstract TViewForm
Listing One (on page 9) shows the source for the abstract TViewForm
(this and all other source is available for download; see end of article
for details). This class declares the methods and properties that enable
it to be embedded as a child window. Specifically, it declares two con-
structors. The constructor that takes a TWinControl parameter,
AParent, assigns the value passed in as AParent to a temporary variable.
This will be used in the overridden Loaded method that sets up the
appropriate property values required by this form to be embedded.

TViewForm also declares three hook methods that may be overridden
by its descendants. These are “reader” methods for the properties
ViewDescription, ViewMenu, and ViewToolbar. Whenever you declare a
virtual class containing reader methods for properties, it’s a good idea to
not keep these methods as abstract, because the descendants of the class
may not need to implement them. For example, not all TViewForm
descendants will return a TToolBar, TPopupMenu, or string description.
Instead of forcing the descendant class to implement these methods,
we’ll just implement them ourselves to provide default nil/empty values,
which is what the descendant class is going to have to do anyway.

TViewForm declares one abstract method, CanChange. Because
TViewForm descendants are to be embedded into a TTabControl, you
may want to prevent the user from switching tabbed pages until a
certain operation is complete. The Shell Application doesn’t know
what functionality the TViewForm provides and, therefore, can’t pre-
vent the tab switch from occurring. However, the Shell Application
can call the CanSwitch method to determine if the tab switch is valid.

TViewForm provides only hook and abstract methods, although it
carries along concrete, template, and event methods from its own
ancestors. For example, one of TViewForm’s ancestors is
TWinControl, which defines two virtual methods that may be over-
ridden by its descendants, CreateWindowHandle and CreateParams.
The declarations of these methods are shown here:
7 May 1999 Delphi Informant
TWinControl = class(TControl)
procedure CreateParams(

var Params: TCreateParams); virtual;
procedure CreateWindowHandle(

const Params: TCreateParams); virtual;
end;

Both methods are used in the TWinControl.CreateWnd method, which
looks similar to Figure 4. I removed much of the code to conserve
space. You’ll see that both the CreateParams and CreateWindowHandle
methods are called in the context of the CreateWnd method. It’s possi-
ble for descendant classes to override both these methods to provide
different behaviors described by the Template Method pattern. In fact,
I override the CreateParams method to ensure that TViewForm can be
embedded as a child window. Other than its name, this Template
Method pattern is nothing new to most Delphi developers. The same
is true for an event method as shown here:

procedure TCustomForm.DoClose(var Action: TCloseAction);

begin
if Assigned(FOnClose) then FOnClose(Self, Action);

end;

This procedure shows the TCustomForm.DoClose method.
TCustomForm is another TViewForm ancestor. This method checks
to see that its field, FOnClose, is referring to a method. FOnClose is
a method pointer that, if valid, gets called. Again, this technique
isn’t new to component developers.

Creating a TViewForm Subclass
Listing Two (on page 10) shows TViewForm2, one of three
TViewForm descendants accompanying this article’s example pro-
gram. I’m illustrating this form because it’s more complete. This
form is a simple database form containing a database connection, a
TDBGrid to display the data, a TToolbar for navigation, and a pop-
up menu. This form can function independently from the main
application. It can also be integrated with the main application,
because it adheres to the interface defined by TViewForm.

Notice how I’ve overridden the methods declared by TViewForm, and
provided the proper results for the Shell Application. For example,
GetViewDescription returns a valid string, and GetViewMenu returns a
valid TPopupMenu for integration with the Shell Application. Also,
examine the CanChange method. This method passes False if Table1 is

Figure 5: The Shell Application main form.

On the Cover

Figure 6: TViewForm1 at run time.

Figure 7: TViewForm2 at run time.

Figure 8: TViewForm3 at run time.
in a mode other than dsBrowse, thus forcing the user to save his or her
work. There are similar forms in the example you can study.

Creating the Shell Application
The Shell Application for this framework is shown in Listing Three
(beginning on page 10). Figure 5 shows the main form for the Shell
Application. Notice that the primary pieces to the main form are the
TTabControl, TCoolBar, and TMainMenu. The TTabControl contains a
TPanel, pnlContainer, that will serve as the container to the TViewForm
descendants. When the user selects a new tabbed page, the TViewForm
corresponding to that tab will be loaded, and the previous form will be
unloaded. TCoolBar contains two bands. The first band is an applica-
tion level band. The TToolButton objects on this band each correspond
to one of the three TViewForm descendants and invokes them as nor-
mal modal forms. The second band, which appears empty, contains a
TPanel, pnlViewTB, that will contain the TToolBar for the TViewForm
that’s returned by the TViewForm.ViewToolBar property. Finally, the
pop-up menu returned by the TViewForm.ViewMenu property is
merged into the main form’s main menu. I don’t use the standard merg-
ing capabilities of TMainMenu, because I’m going to have multiple lev-
els of merging when I extend this framework in my next article.

As you examine Listing Three, you’ll notice another class,
TViewManager. This class represents another pattern, which I’ll discuss
in my next article. For now, just know that this is the class with which
the main form interacts to reference the TViewForm descendants.
TViewManager is responsible for creating, freeing, and managing the
TViewForm descendants. I’ll discuss TViewManager’s functionality in
the context of the main form interacting with TViewForms.
8 May 1999 Delphi Informant
When the user attempts to change a tab on the TTabControl, the
OnChanging event handler for the TTabControl is invoked, and
the AllowChange parameter is set to the value of the currently
loaded TViewForm.CanChange method. You can see how you
might prevent a user from changing tabs and the current
TViewForm. If the change is valid, tctrlMainChange,
TTabControl.OnChange, is invoked. This method performs several
steps. First, it un-merges the current TViewForm’s menu. Then, it
retrieves the next TViewForm and merges its menu and toolbar
with the main form. The reason I don’t have an UnMergeToolBar
method is because the TViewForm’s toolbar is still owned by
TViewForm. In the process of freeing the TViewForm, its
TToolBar is also freed. Figures 6, 7, and 8 show the main form
with the three TViewForm descendants contained in pnlContainer.

The main form retrieves the TViewForm descendants using one
of two methods. One is illustrated in the tctrlMainChange
method in the call to the TViewManager.GetViewForm methods
shown below:

FViewManager.GetViewForm(tctrlMain.TabIndex, pnlContainer);

TViewManager.GetViewForm is an overloaded method that creates a
TViewForm instance and assigns the second parameter, in this case
pnlContainer, as the parent. TViewManager does this by calling the
appropriate constructor of TViewForm. The TViewManager
method is called in TMainForm.ShowViewFormModal:

ViewForm := FViewManager.GetViewForm(ViewIndex);

On the Cover

Figure 9: Modal TViewForm2.
This method returns a reference to a TViewForm. ShowViewFormModal
demonstrates how you can show the same form previously embedded in
a TPanel as a separate modal form (see Figure 9). Finally, notice that the
main form’s OnCreate event handler invokes the tctrlMainChange
method to load the first TViewForm.

Conclusion
The Template Method pattern is really an “OOP Patterns” term for
something most Delphi programmers have been doing since Delphi
1. In this article, I discussed the Template Method pattern and started
on the initial design of an application framework. I’ll use this frame-
work in my next article to discuss another useful and commonly used
pattern, the Builder pattern. I’ll also illustrate how to extend this
framework to embed fully functional, run-time modules by using
add-in packages. In closing, I’d like to thank David Streever and Anne
Pacheco for their technical and grammatical review of this article. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\MAY \DI9905XP.

Xavier Pacheco is the president and chief consultant of Xapware Technologies Inc.,
where he provides consulting services and training. He is also the co-author of
Delphi 4 Developer’s Guide [SAMS Publishing, 1998]. You can write Xavier at
xavier@xapware.com, or visit http://www.xapware.com.
Begin Listing One — TViewForm
unit xwViewFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, ComCtrls, Menus;

type
{ TViewForm serves as the abstract class for Views within

the ShellApp framework. }
TViewForm = class(TForm)
private

FAsChild: Boolean; // Form created as child indicator.
FTempParent: TWinControl; // Temporary parent window.

protected
procedure CreateParams(var Params: TCreateParams);

override;
9 May 1999 Delphi Informant
procedure Loaded; override;
function GetViewDescription: string; virtual;
function GetViewMenu: TPopupMenu; virtual;
function GetViewToolBar: TToolBar; virtual;

public
// Constructor to create as a normal form.
constructor Create(AOwner: TComponent); overload;

override;
// Constructor to create as a child form.
constructor Create(AOwner: TComponent;

AParent: TWinControl); reintroduce; overload;
function CanChange: Boolean; virtual; abstract;
property ViewDescription: string

read GetViewDescription;

property ViewMenu: TPopupMenu read GetViewMenu;

property ViewToolbar: TToolBar read GetViewToolBar;

end;

implementation

{$R *.DFM}

{ TviewForm. }
constructor TViewForm.Create(AOwner: TComponent);

begin
FAsChild := False;

inherited Create(AOwner);

end;

constructor TViewForm.Create(AOwner: TComponent;

AParent: TWinControl);

begin
FAsChild := True;

FTempParent := aParent;

inherited Create(AOwner);

end;

procedure TViewForm.Loaded;

begin
inherited;
if FAsChild then begin

align := alClient;

BorderStyle := bsNone;

BorderIcons := [];

Parent := FTempParent;

Position := poDefault;

end;
end;

procedure TViewForm.CreateParams(

var Params: TCreateParams);

begin
Inherited CreateParams(Params);

if FAsChild then
Params.Style := Params.Style or WS_CHILD;

end;

function TViewForm.GetViewMenu: TPopupMenu;

begin
Result := nil;

end;

function TViewForm.GetViewToolBar: TToolBar;

begin
Result := nil;

end;

function TViewForm.GetViewDescription: string;
begin

Result := EmptyStr;

end;

end.

End Listing One

http://www.xapware.com

On the Cover
Begin Listing Two — TViewForm2
unit ViewFrm2;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, xwViewFrm, ComCtrls, ToolWin, Grids,

DBGrids, Db, DBTables, Menus;

type
TViewForm2 = class(TViewForm)

Table1: TTable;

DataSource1: TDataSource;

DBGrid1: TDBGrid;

ToolBar1: TToolBar;

ToolButton1: TToolButton;

ToolButton2: TToolButton;

ToolButton3: TToolButton;

ToolButton4: TToolButton;

PopupMenu1: TPopupMenu;

InsertRecord1: TMenuItem;

EditRecord1: TMenuItem;

DeleteRecord1: TMenuItem;

procedure ToolButton1Click(Sender: TObject);

procedure ToolButton2Click(Sender: TObject);

procedure ToolButton3Click(Sender: TObject);

procedure ToolButton4Click(Sender: TObject);

procedure PopupMenuClick(Sender: TObject);

protected
function GetViewToolBar: TToolBar; override;
function GetViewMenu: TPopupMenu; override;
function GetViewDescription: string; override;

public
function CanChange: Boolean; override;

end;

var
ViewForm2: TViewForm2;

implementation

{$R *.DFM}

{ TViewForm2. }
function TViewForm2.CanChange: Boolean;

begin
if Table1.State <> dsBrowse then

ShowMessage(

'Cannot change pages until you save the record');

Result := Table1.State = dsBrowse;

end;

function TViewForm2.GetViewDescription: string;
begin

Result := 'View Form 2';

end;

function TViewForm2.GetViewMenu: TPopupMenu;

begin
Result := PopupMenu1;

end;

function TViewForm2.GetViewToolBar: TToolBar;

begin
Result := ToolBar1;

end;

procedure TViewForm2.ToolButton1Click(Sender: TObject);

begin
inherited;
Table1.First;

end;

procedure TViewForm2.ToolButton2Click(Sender: TObject);

begin
inherited;
10 May 1999 Delphi Informant
Table1.Prior;

end;

procedure TViewForm2.ToolButton3Click(Sender: TObject);

begin
inherited;
Table1.Next;

end;

procedure TViewForm2.ToolButton4Click(Sender: TObject);

begin
inherited;
Table1.Last;

end;

procedure TViewForm2.PopupMenuClick(Sender: TObject);

begin
inherited;
ShowMessage((Sender as TMenuItem).Caption);

end;

end.

End Listing Two
Begin Listing Three — The Shell Application
unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, ExtCtrls, ComCtrls, Menus, ToolWin,

xwViewFrm, ImgList;

type
TViewManager = class(TObject)
private

FCurrentView: TViewForm;

public
constructor Create;

destructor Destroy; override;
{ GetViewForm retrieves the View, giving it a parent

window into which it embeds itself. }
function GetViewForm(const ViewIndex: Integer;

AParent: TWinControl): Boolean; overload;
{ GetViewForm retrieves a specified view by index. This

method retrieves a reference to a view instance which
does not embed itself. }

function GetViewForm(const ViewIndex: Integer):

TViewForm; overload;
{ CloseCurrentViewForm closes and destroys the current

embedded view form. }
procedure CloseCurrentViewForm;

{ MergeViewToolBar merges the current views toolbar
with the AViewToolBarParent parameter. }

procedure MergeViewToolBar(

AViewToolbarParent: TWinControl);

{ MergeViewMenu merges the current views menu with the
main menu specified by AAddMenu. AMainMenu is used as
the owner of the newly created menu. }

procedure MergeViewMenu(AMainMenu: TMainMenu;

AAddMenu: TMenuItem);

{ UnmergeViewMenu unmerges and destroys the menu added
by the ViewMenu. }

procedure UnmergeViewMenu(AMenuItem: TMenuItem);

end;

TMainForm = class(TForm)
mmMain: TMainMenu;

mmiFile: TMenuItem;

mmiExit: TMenuItem;

stbrMain: TStatusBar;

tctrlMain: TTabControl;

pnlContainer: TPanel;

CoolBar1: TCoolBar;

On the Cover
ToolBar1: TToolBar;

ToolButton1: TToolButton;

ToolButton2: TToolButton;

ToolButton3: TToolButton;

pnlViewTB: TPanel;

mmiView: TMenuItem;

mmiHelp: TMenuItem;

mmiAbout: TMenuItem;

ilMain: TImageList;

procedure mmiExitClick(Sender: TObject);

procedure tctrlMainChanging(Sender: TObject;

var AllowChange: Boolean);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure tctrlMainChange(Sender: TObject);

procedure ToolButton1Click(Sender: TObject);

procedure ToolButton2Click(Sender: TObject);

procedure ToolButton3Click(Sender: TObject);

private
FViewManager: TViewManager;

procedure ShowViewFormModal(const ViewIndex: Integer);

end;

var
MainForm: TMainForm;

implementation

uses
ViewFrm1, ViewFrm2, ViewFrm3;

{$R *.DFM}

{ TViewManager. }
procedure TViewManager.CloseCurrentViewForm;

begin
if FCurrentView <> nil then begin

FCurrentView.Free;

FCurrentView := nil;
end

end;

constructor TViewManager.Create;

begin
inherited Create;

FCurrentView := nil;
end;

destructor TViewManager.Destroy;

begin
if Assigned(FCurrentView) then

FCurrentView.Free;

inherited Destroy;

end;

function TViewManager.GetViewForm(const ViewIndex: Integer;

AParent: TWinControl): Boolean;

begin
CloseCurrentViewForm;

case ViewIndex of
0: FCurrentView := TViewForm1.Create(nil, AParent);
1: FCurrentView := TViewForm2.Create(nil, AParent);
2: FCurrentView := TViewForm3.Create(nil, AParent);

end;
FCurrentView.Show;

Result := True;

end;

function TViewManager.GetViewForm(

const ViewIndex: Integer): TViewForm;

begin
Result := nil; // Default.
case ViewIndex of

0: Result := TViewForm1.Create(Application);

1: Result := TViewForm2.Create(Application);

2: Result := TViewForm3.Create(Application);

end;
end;
11 May 1999 Delphi Informant
procedure TViewManager.MergeViewMenu(AMainMenu: TMainMenu;

AAddMenu: TMenuItem);

var
MenuItem: TMenuItem;

i: Integer;

begin
if FCurrentView <> nil then

if FCurrentView.ViewMenu <> nil then begin
for i := 0 to FCurrentView.ViewMenu.Items.Count-1 do

begin
MenuItem := TMenuItem.Create(AMainMenu);

MenuItem.Caption :=

FCurrentView.ViewMenu.Items[i].Caption;

MenuItem.OnClick :=

FCurrentView.ViewMenu.Items[i].OnClick;

AAddMenu.Add(MenuItem);

end;
AAddMenu.Visible := True;

end;
end;

procedure TViewManager.UnmergeViewMenu(

AMenuItem: TMenuItem);

var
i: Integer;

begin
for i := AMenuItem.Count - 1 downto 0 do

AMenuItem.Delete(i);

AMenuItem.Visible := False;

end;

procedure TViewManager.MergeViewToolBar(

AViewToolbarParent: TWinControl);

begin
if FCurrentView.ViewToolbar <> nil then begin

FCurrentView.ViewToolBar.EdgeBorders := [];

FCurrentView.ViewToolbar.Parent := AViewToolbarParent;

end;
end;

{ TMainForm. }
procedure TMainForm.FormCreate(Sender: TObject);

begin
FViewManager := TViewManager.Create;

tctrlMainChange(nil);
end;

procedure TMainForm.FormDestroy(Sender: TObject);

begin
FViewManager.Free;

FViewManager := nil;
end;

procedure TMainForm.mmiExitClick(Sender: TObject);

begin
Close;

end;

procedure TMainForm.tctrlMainChanging(Sender: TObject;

var AllowChange: Boolean);

begin
AllowChange := FViewManager.FCurrentView.CanChange;

end;

procedure TMainForm.tctrlMainChange(Sender: TObject);

begin
FViewManager.UnmergeViewMenu(mmiView);

FViewManager.GetViewForm(tctrlMain.TabIndex,

pnlContainer);

FViewManager.MergeViewToolBar(pnlViewTB);

FViewManager.MergeViewMenu(mmMain, mmiView);

stbrMain.Panels[1].Text :=

FViewManager.FCurrentView.ViewDescription;

end;

procedure TMainForm.ShowViewFormModal(

const ViewIndex: Integer);

On the Cover
var
ViewForm: TViewForm;

begin
ViewForm := FViewManager.GetViewForm(ViewIndex);

try
ViewForm.ShowModal;

finally
ViewForm.Free;

end;
end;

procedure TMainForm.ToolButton1Click(Sender: TObject);

begin
ShowViewFormModal(0);

end;

procedure TMainForm.ToolButton2Click(Sender: TObject);

begin
ShowViewFormModal(1);

end;

procedure TMainForm.ToolButton3Click(Sender: TObject);

begin
ShowViewFormModal(2);

end;

end.

End Listing Three
12 May 1999 Delphi Informant

13 May 1999 Delphi Informant

Undocumented
Undocumented Win32 API / Delphi 2, 3, 4

By Kevin J. Bluck and James Holderness

Figure 1: The d
From the Shell
Part II: More Undocumented Shell Dialog Boxes

Last month, we looked at several useful dialog boxes whose functions are not provided
in Comdlg.dll, nor are they clearly documented. Instead of trying to duplicate interfaces

by building a dialog box manually, we showed how to access several commonplace system
dialog boxes you may need, but are difficult to find. To close out this two-part series, we’ll
show you several more functions and how to use them.
A sample program accompanies this series and
demonstrates each dialog box function (see Figure 1).
The first article covered five dialog boxes: Browse for
Folder, About Windows, Format, Change Icon, and
Run. This month we tackle the rest.

Finding Files
Many people want the Find dialog box. It’s the
handy utility provided by the shell to find files
based on a variety of criteria (see Figure 2). The
ability to spawn this dialog box from your own
application is provided by the SHFindFiles func-
tion. It’s exported from Shell32.dll, and the
ordinal value is 90:

function SHFindFiles(SearchRoot: PItemIDList;

SavedSearchFile: PItemIDList): LongBool;

stdcall;
emonstration program.
The SearchRoot parameter allows you to begin a
search in a particular folder. This is the same effect
you get if you select Find on the context menu of a
folder you’ve right-clicked. You may pass this para-
meter as nil to allow the user to begin searching at
the Desktop. The SavedSearchFile parameter
allows you to specify a file saved from a previous
search (a .FND file) that will initialize the dialog
box to match the saved state. This is the effect you
would get from opening a .FND file in the
Explorer. You may also pass this parameter as nil.
Passing both parameters as nil produces the dialog
box you would get from selecting Find | Files or

Folders from the Start menu.

If you specify a non-nil SearchRoot PIDL, it’s your
responsibility to free that PIDL after calling
SHFindFiles. However, if you pass a non-nil
SavedSearchFile PIDL, you mustn’t try to free that
PIDL if the function succeeds, as an error will
occur if you do. We can only hope the shell will
free it when it’s done doing whatever it does with
it. If the function fails, however, you must free the
PIDL yourself. [For a description of PIDLs and
their use, see “Shell Notifications” by Kevin J.
Bluck and James Holderness in the March, 1999
Delphi Informant.]

Unlike most dialog box functions, this function is
non-modal. Instead, it starts the dialog box in a
separate thread, then returns immediately. The
return value will be True if the dialog box was suc-
cessfully spawned, False if there was an error. If
the user doesn’t explicitly close the dialog box, it
will automatically close when your process termi-
nates. Keep in mind that you have no direct way
of telling what the user does with the dialog box.
The best way for your application to become
aware of files the user eventually finds is to sup-

Figure 2: The Find dialog box.

Undocumented

Figure 3: The Properties dialog box — in this case for a drive.
port OLE drag-and-drop, so the user can drag found files from the
dialog box into your application.

Finding Computers
Another function closely related to SHFindFiles is SHFindComputer. This
function shows the same dialog box you would get if you clicked the Start

menu and selected Find | Compute. Its interface is identical to
SHFindFiles, except it completely ignores the parameters you send it.
Apparently, they have been reserved for future expansion. Just pass nil to
both parameters. The return values are identical to SHFindFiles, and like
that function, the dialog box is non-modal. So the function returns
immediately while the dialog box remains open, and there is no direct
means of telling what the user did with the dialog box. SHFindComputer
is exported from Shell32.dll by the ordinal value of 91:

function SHFindComputer(Reserved1: PItemIDList;

Reserved2: PItemIDList): LongBool; stdcall;

Browsing for Files
There really isn’t any compelling reason why you need to use this
next function. GetFileNameFromBrowse is nothing more than a sim-
plified wrapper around the GetOpenFileName function, which is the
function you call when you want to display the standard Open dia-
log box. Obviously, you already have access to everything this func-
tion can do by using the standard VCL TOpenDialog component or
the GetOpenFileName API function. However, for some applica-
tions, it might be nice to be able to browse for a file with a single
function call without the tedious process of filling in all the mem-
bers of the OPENFILENAME structure, or instantiating an
instance of OpenDialog. The function is exported from Shell32.dll
by ordinal value 63:

function GetFileNameFromBrowse(Owner: HWND;

FileName: Pointer; MaxFileNameChars: DWORD;

InitialDirectory: Pointer; DefaultExtension: Pointer;

Filter: Pointer; Caption: Pointer): LongBool; stdcall;

Most of the parameters to this function correspond directly with
members of the OPENFILENAME structure. The Owner parameter
identifies the window that owns the dialog box. The FileName para-
meter points to a buffer that contains a file name used to initialize the
dialog box’s Edit control. When the function returns, this buffer con-
tains the full path of the selected file. It’s advisable to provide a buffer
capable of storing MAX_PATH characters plus a null terminator.
The MaxFileNameChars parameter specifies the size, in characters, of
the buffer pointed to by the FileName parameter. The InitialDirectory
parameter points to a string that specifies the initial file directory
when the dialog box appears. If the FileName parameter contains a
fully qualified file name with path, the InitialDirectory parameter is
14 May 1999 Delphi Informant
ignored, and the path from the FileName parameter is used instead.
The DefaultExtension parameter points to a buffer containing the
default extension the dialog box will search for. The Filter parameter
points to a buffer containing pairs of null-terminated filter strings
that will be shown in the Files of Type drop-down list. The Caption
parameter points to a string to be shown in the title bar of the dialog
box. For further details on all these parameters, see the documenta-
tion on the Windows OPENFILENAME data structure.

If the user selects a file to open, the return value is True. It’s False if
an error occurs, the user chooses the Cancel button, or the user
chooses the Close command from the System menu.

Displaying Object Properties
Another handy undocumented dialog box function is
SHObjectProperties. This function can be used to display the
Properties dialog box for a drive, folder, or file (see Figure 3). It
can also be used to display the properties for a printer object.
The function is exported from Shell32.dll by ordinal value 178:

function SHObjectProperties(Owner: HWND; Flags: UINT;

ObjectName: Pointer; InitialTabName: Pointer):

LongBool; stdcall;

The Owner parameter identifies the window that owns the dialog box.
The Flags parameter specifies the type of object whose name is passed
in the ObjectName parameter. These are the possible flag values:

OPF_PRINTERNAME = $01;

OPF_PATHNAME = $02;

The ObjectName parameter points to a string containing the path
name, or the printer name whose properties will be displayed. If a
printer is local, you may use only the actual printer name. If a print-
er is from the network, you need to use the entire UNC-style name,
in the form \\COMPUTERNAME\PRINTERNAME. The
InitialTabName parameter points to a string containing the name of

Figure 4: The Map Network Drive dialog box.

Undocumented
the tabbed page that will initially be shown in the dialog box. If the
InitialTabName parameter is nil, or the string doesn’t match the
name of any tab, the first tab on the property sheet will be selected.

If the function succeeds, the return value is True. If the function
fails, the return value is False. To get extended error information, call
the API function GetLastError. Note that this dialog box is non-
modal, similar to the SHFindFiles dialog box, so when the function
returns, the dialog box will almost certainly still be open. There is
no way of knowing when the user has closed the dialog box.

Networking
The next two functions allow your user to connect to network
resources. SHNetConnectionDialog (see Figure 4) is available on
Windows 95 and NT, and is exported from Shell32.dll by ordinal 160:

function SHNetConnectionDialog(Owner: HWND;

ResourceName: Pointer; ResourceType: DWORD):

DWORD; stdcall;

SHStartNetConnectionDialog is available only on NT. It shows the
same dialog box as SHNetConnectionDialog, but starts it non-
modally in another thread and returns immediately. This function
is exported from Shell32.dll only on NT by ordinal value 215:

function SHStartNetConnectionDialog(Owner: HWND;

ResourceName: PWideChar; ResourceType: DWORD):

DWORD; stdcall;

The parameter lists are basically identical. The Owner parameter
takes the handle of the window that will own the dialog box. The
ResourceName parameter points to a null-terminated string specify-
ing the fully qualified UNC path of the network resource to connect
to. Specifying this parameter results in a dialog box that is “pre-set”
to the named resource and doesn’t allow the user to change the
resource. If you pass nil to this parameter, the dialog box allows the
user to specify the resource.

The ResourceType parameter can be set to one of two values:
RESOURCETYPE_DISK or RESOURCETYPE_PRINT. These val-
ues will produce different dialog boxes. The first allows you to assign a
drive letter to a network disk resource, while the second allows you to
map a parallel port name, such as LPT2, to a network printer.
However, for some reason, RESOURCETYPE_PRINT doesn’t work
on NT. If you pass this value on NT, the function fails. There are also
some other constants in the RESOURCETYPE_XXX family, but
none of the others work for this function on any platform.

If the function succeeds, the return value is NO_ERROR. If the
user cancels the dialog box, it returns –1 ($FFFFFFFF). If the func-
tion fails, the return value is some other error code. To get more
detailed error information, call the GetLastError API function.
15 May 1999 Delphi Informant
Shutting Down the System
The next two functions, ExitWindowsDialog and RestartDialog,
deal with the problem of shutting down and restarting the oper-
ating system. They may seem out of place in this article because
they’re not really much more than extensions of the
ExitWindowsEx API function, but they both produce dialog
boxes as part of the process. Both functions are exported from
Shell32.dll. The ordinal export value for ExitWindowsDialog is
60, and the ordinal for RestartDialog is 59. These function decla-
rations are shown in:

procedure ExitWindowsDialog(Owner: HWND); stdcall;

and:

function RestartDialog(Owner: HWND; Reason: Pointer;

ExitType: UINT): DWORD; stdcall;

ExitWindowsDialog is probably the less useful of the two. It’s the
dialog box displayed when you select Shut Down from the Start

menu. The dialog box doesn’t always seem to actually use Owner as
a parent. On Windows 95, the owner window will receive a
WM_QUIT message if the operation is successful. On Windows
NT, the owner window doesn’t appear to be used at all. There is
no return value for the function, so you have no way of knowing
what the user selected, or whether the operation was canceled.
Presumably, your application will be receiving shutdown messages
from Windows fairly soon if the user decided to quit, but there is
no way to know for sure at the time of the function call.

RestartDialog is used when changes are made to the system that
require a shutdown or restart before they can take effect. The Owner
parameter identifies the window that will own the dialog box. The
Reason parameter points to a string that is displayed in the dialog box,
explaining the reason for the shutdown. The ExitType parameter speci-
fies the type of shutdown that will be performed if the user selects the
Yes button. You can use a subset of the values used by ExitWindowsEx
in addition to a few new values. The following is the complete list:

EWX_LOGOFF = $00;

EWX_SHUTDOWN = $01;

EWX_REBOOT = $02;

EW_RESTARTWINDOWS = $42;

EW_REBOOTSYSTEM = $43;

EW_EXITANDEXECAPP = $44;

The return value is IDYES if the user chose to perform the shut-
down. It is IDNO if the operation was canceled.

There are a couple of other points about RestartDialog you should
note. The reason displayed in the dialog box always has some default
text appended to it asking the user to confirm the operation. It’s
therefore advisable you always end your reason text string with a
space, or a CR/LF. The title of the dialog box is always set to
“System Settings Change.” Finally, the return value cannot be used
to determine the success of the operation. It only signifies the choice
made by the user. If the restart operation failed for some reason, the
return value will still be IDYES.

Note that for either of these functions to work correctly, users must
have the SE_SHUTDOWN_NAME privilege enabled in their profile.
This is usually not an issue in Windows 95, but some installations of
NT are set up to prevent certain users from shutting down the system.

Undocumented
This is particularly common on server machines, which would deny
other users needed services if shut down at the wrong time. This can
be an insidious bug, because developer accounts typically have “Local
Administrator” privileges and can shut down the system, but when a
user tries the same thing, the privilege is unavailable. Be sure to test
your application using typical user accounts before release.

Out of Memory!
Here’s an undocumented dialog box function of dubious value, but
we mention it anyway for the sake of completeness.
SHOutOfMemoryMessageBox is the standard shell dialog box used
when the system is low on memory. It’s exported from Shell32.dll by
the ordinal value of 126:

function SHOutOfMemoryMessageBox(Owner: HWND;

Caption: Pointer; Style: UINT): Integer; stdcall;

It makes a call to the standard Windows API function
MessageBox, passing its three parameters along with the standard
system error message ERROR_OUTOFMEMORY, i.e. “Not
enough storage is available to complete this operation,” or the
local language equivalent.

The Owner parameter specifies the parent window for the dialog box.
The Caption parameter points to a null-terminated string used for the
dialog box title. If Caption is nil, the title of the parent window is used
instead. The Style parameter can be set to any combination of the
MB_XXX constants used by the MessageBox function, but it’s typically
set to (MB_OK or MB_ICONHAND). The return values are identical to
those for MessageBox. Check the documentation for that function if you
would like full details on the MB_XXX constants and the return value.

When the actual MessageBox call is made, MB_SETFOREGROUND is
added to the Style flags, but if that first call fails, a second MessageBox call
is made, this time with MB_SYSTEMMODAL added to the Style flags.
MB_SYSTEMMODAL, in combination with MB_ICONHAND,
should cause the message box to display regardless of available memory.
Theoretically, anyway; in practice, we’ve observed a bug in the function
that prevents the second call from ever being made. In the event the sys-
tem really is out of memory, this function will likely be incapable of dis-
playing anything. However, it still returns the result of the MessageBox
call, so you should be able to tell when the function has failed by check-
ing for a return value of zero.

Out of Space!
Another resource-oriented function is SHHandleDiskFull. Its name
is a bit of hyperbole in our opinion. It certainly can’t handle a full
disk all by itself. It can provide a useful tool, however, to deal with
users who never empty their Recycle Bins (see Figure 5). This func-
tion is generally called by an application in response to a disk opera-
tion that is failing because of insufficient free disk space. When
called, if the user has anything in that disk’s Recycle Bin, this func-
16 May 1999 Delphi Informant

Figure 5: The Hard Disk is Full dialog box.
tion gives the user the opportunity to empty their Recycle Bin,
hopefully freeing up a significant amount of disk space. If there is
no Recycle Bin on the specified drive, or the Recycle Bin is already
empty, this function does absolutely nothing. This function is
exported from Shell32.dll by ordinal value 185:

procedure SHHandleDiskFull(Owner: HWND;

Drive: UINT); stdcall;

The Owner parameter identifies the dialog box’s owner window. It
seems to make no difference if you pass 0 to this parameter. The
Drive parameter specifies the zero-based number of the drive that is
running out of space. This is the same scheme used in
SHFormatDrive, where 0 = A:, 1 = B:, and so on.

The thing that concerns us about this function is that it’s not clear
how one should use it. It really can’t be used as a standard error dia-
log box whenever a disk runs out of space, because the dialog box
won’t show at all when there is nothing in the Recycle Bin, and there
is no return value to provide information about whether the dialog
box was ever shown. It’s also difficult to know whether the applica-
tion can immediately retry the operation after this procedure returns,
because there’s no direct way to know if the user has freed any space.
The user may have chosen to merely open the Recycle Bin, or may
have done nothing. It seems the application will have to monitor disk
free space on its own, and merely use this dialog box as an attempt at
a “quick fix” second chance before resorting to failing the operation.

Generic Shell Message Boxes
The last set of functions we’ll cover is the family of generic message
dialog box functions provided by the shell. ShellMessageBox is just a
wrapper around the Windows API function MessageBox that allows
you to use either string resource identifiers, or standard null-terminat-
ed strings, as well as allowing additional inclusion strings in the mes-
sage string in a manner similar to the Windows API FormatMessage
function. ShellMessageBox is exported from Shell32.dll by ordinal 183:

function ShellMessageBoxA(Module: THandle; Owner: HWND;

Text: PChar; Caption: PChar; Style: UINT;

Parameters: array of Pointer): Integer; cdecl;

Technically, this function is called ShellMessageBoxA, as it is an
ANSI-only variant, even on NT. There is also a UNICODE variant
called ShellMessageBoxW, which is exported by ordinal 182, but this
variant is available only on NT:

function ShellMessageBoxW(Module: THandle; Owner: HWND;

Text: PWideChar; Caption: PWideChar; Style: UINT;

Parameters: array of Pointer): Integer; cdecl;

The Module parameter takes the handle of the module that provides
the string resources for the dialog box. You should use the
GetModuleHandle Windows API function to retrieve that handle. The
Owner parameter is the usual handle to the owner window. The Text
parameter points to a null-terminated string containing the text you
would like displayed in the dialog box. It may alternatively be the
resource ID of a string resource contained in the module identified by
the Module parameter. This text may include “escape sequences,”
which the function will replace with the additional text parameters
passed in the Parameters parameter in the same manner provided by
the API function FormatMessage. These escape sequences take the form
“%#”, where “#” is the ordinal position of the extra string parameter in
question. For example, “%1” will be replaced by the first string in the

Undocumented
Parameters open array, “%3” will be replaced by the third, and so on.
The Caption parameter points to a null-terminated string that specifies
the text shown in the dialog box title bar. Again, a resource ID may be
used instead of a string pointer. If this parameter is left nil, the caption
of the window specified in the Owner parameter is used instead. The
Style parameter is a bit-mask of flags, the same ones used in the
Windows API MessageBox function. This parameter can be set to any
combination of the MB_XXX constants used by the MessageBox func-
tion. The return value is also identical to that of the MessageBox API
function. Check the documentation for that function if you would like
full details on the MB_XXX constants and the return value.

As for the Parameters parameter, alert readers have probably already
noticed that the Microsofties have done something very naughty.
They’ve exported a function using the cdecl calling convention instead
of the standard stdcall. Plus, to add insult to injury, they’ve made use of
C language-specific variable parameter lists! This was quite lazy on their
part. FormatMessage shows they know how to do the same thing in a
more language-independent fashion, by passing an array of 32-bit val-
ues that reference values to insert in the formatted message. This cdecl
situation, of course, makes it rather difficult to translate these functions
to Delphi, because Delphi doesn’t directly support variable parameter
lists. Well, that’s what we get for messing with undocumented func-
tions. To deal with this problem, the Parameters parameter is typed as
an open array of Pointer. An open array parameter is the closest simula-
tion available in Delphi to the concept of variable parameter lists in C.
Interested readers are welcome to examine the inline assembly code
required to set up the cdecl call stack correctly in the source code
included with this article (see end of article for download details). At
any rate, this is where pointers to the “extra” strings required to replace
any escape codes are provided. Note that because of the mechanics of
open arrays, you must specify at least one pointer value here. If you
have no escape sequences to replace, and therefore no additional strings
to pass, simply stick one nil value into the brackets.

Componentization
In general, wrapping a component around a system dialog box is one
of the simplest tasks in component development. The only dialog box
component with any real complexity to it in this project is the one
encapsulating SHBrowseForFolder. RunFileDlg is slightly complex, as it
incorporates a notification message scheme. All the rest are quite
straightforward. In general, they consist of little more than a construc-
tor to initialize data, some properties that correspond directly to the
parameters expected by the underlying API function, and an Execute
method to invoke the dialog box at run time. Some of them, such as
ExitWindowsDialog, are so simple that they aren’t even worth a com-
ponent. We’ll just mention a few general design principles common to
all these dialog box components, rather than bore you with the excru-
ciating details of their rather simple and repetitive implementations.

The efficiency-minded reader may question why we bothered overriding
the constructors for many of these components. The compiler automati-
cally zero-initializes all TObject descendants’ data storage upon creation,
so there is no real reason to do so in a constructor; that we have done so
in many cases is unnecessary. We believe, however, that the gain in code
readability and ability to see the exact expected default values are well
worth the trivial amount of extra code.

We have converted all flag types to enumerated and set types. This
serves two purposes: It enables rigorous type-checking by the com-
piler, and it prevents the user from having to remember “magic
numbers” for use in the design-time editor. To avoid translating
these enumerated types back and forth to the corresponding
17 May 1999 Delphi Informant
Windows constants in the middle of other code, we’ve implemented
“translation” functions that handle this task. This ensures that trans-
lation is done only in one easily identifiable place in the unit.

The common denominator for all dialog-wrapping components is
the Execute method. In every case, the meat of the API functionality
is in that method. All the other code associated with the component
is strictly in a supporting role, implementing the mechanics of the
Delphi component paradigm. If you want to see a practical example
of how a particular API call is used, check the corresponding compo-
nent’s Execute method in the code accompanying this article (again,
see end of article for download details).

We’ve added a few stand-alone functions to invoke the simpler dia-
log boxes, or to invoke default instances of the more complicated
ones. Sometimes, a developer just wants to call a single function for
a general dialog box rather than monkey with a component. If you
want to do any significant customization, however, you should use
the component. Of course, you’re also welcome to call the API func-
tions directly, if you like.

Browsing Magic
By far, the most complex of these dialog box components is
TkbBrowseForFolderDialog (discussed last month). The
SHBrowseForFolder API function has a complicated initialization
process and a callback mechanism to be implemented. Here, we pre-
sent the highlights of encapsulating this function.

The most difficult aspect of this function for the uninitiated is that it
deals with the dreaded PIDL, formally known in Delphi as the
PItemIDList record type, defined in the VCL unit ShlObj. Basically, a
PIDL is the shell version of the DOS path. Every file system object can
be represented either as a PIDL or a path. In addition, many non-file
system objects also exist, such as Control Panel, which can’t be identified
by anything but a PIDL. Because the SHBrowseForFolder dialog box
allows you to select folders that are not part of the file system, it uses
PIDLs for input and output. For the purposes of this article, you may
consider a PIDL to be a pointer supplied by the shell that points to arbi-
trary data that should not be modified in any way. Functions have been
provided in the unit kbsdPIDL that will convert a file system path to a
PIDL and vice versa, assuming the PIDL in question points to a file
system object. The most unusual aspect about PIDLs is that you should
never free a PIDL using the usual RTL functions like FreeMem; you
must use only the FreePIDL function provided in kbsnPIDL.

This leads directly into the problem of specifying the Browse dialog
box’s root folder. It’s possible to limit the scope of the user’s browse by
specifying a root folder lower in the hierarchy than Desktop. For
example, if you specify the C:\ folder, the user will be unable to
browse anything that isn’t part of the C: drive. The tricky part is that
this root folder must be specified as a PIDL. Furthermore, the root
folder isn’t necessarily a file system path. How do you allow the user to
specify both file and non-file root folders in the design-time editor?

The solution is to use two properties. One property is a new enu-
merated type, TkbsdSpecialLocation, which encapsulates the list of
Windows API constants that correspond to various “special” folders,
such as Control Panel. These constants can be used with the
SHGetSpecialFolderLocation API function to obtain a PIDL to that
folder. By setting a property to one of these enumerated values, spe-
cial non-file folders can be specified without requiring the developer
to type in the data for that folder’s PIDL. One of the values of
TkbsdSpecialLocation is kbsdPath. Setting this value will enable a sec-

Undocumented
ond property to allow the developer to enter a specific file system
path to use as the root folder. You can see the implementation of
this scheme in the Execute method fragment shown in Figure 6.

Once this root folder problem is solved, the remaining initialization
is straightforward. We simply go through the required list of para-
meters in TBrowseInfo, and translate the corresponding component
property values into each data member. Once TBrowseInfo is ready,
we call the function.

While the dialog box is displayed, it’s issuing calls to a callback func-
tion that we must implement. Our implementation is shown in
Figure 7. The sole purpose of this callback is to invoke the compo-
nent’s event dispatch methods, passing the necessary data to each. A
couple of items are worthy of mention. We’ve used the “user-defined”
parameter of the callback to pass a pointer to our own component.
This is important, because the callback is not an object member
18 May 1999 Delphi Informant

{ If the RootFolder property specifies to use the Path
property as the root, fetch the PIDL for that path and
load it into the pidlRoot member of BrowseInfo. }

if (Self.RootFolder = kbsdPath) then
begin

BrowseInfo.pidlRoot := GetPIDLFromPath(Self.RootPath);

end { if }
{ If the specified root is Desktop, just set a nil PIDL. }
else if (Self.RootFolder = kbsdDesktop) then

begin
BrowseInfo.pidlRoot := nil;

end { else if }
{ If RootFolder isn't specifying a path for the root, try

to fetch the PIDL for some special folder. If the folder
is not recognized, just leave the root PIDL nil to get a
default tree. }

else
begin

BrowseInfo.pidlRoot :=

GetSpecialLocationPIDL(Self.RootFolder);

end; { else }

Figure 6: Setting the root folder for SHBrowseForFolder.

function BrowseForFolderCallback(DialogHandle: HWND;

MessageID: UINT; PIDL: LPARAM; ComponentPointer: LPARAM):

Integer; stdcall;
var

DialogComponent: TkbBrowseForFolderDialog;

begin
{ If the value we expect to point to the dialog component

is not nil... }
if (ComponentPointer <> 0) then

begin
DialogComponent :=

TkbBrowseForFolderDialog(ComponentPointer);

{ Based on which message is invoking the callback,
invoke the appropriate event dispatch method for
the referenced component. We are cheating a bit;
these are actually protected methods, but we can
access them from outside the class because this
code is in the same unit. }

case (MessageID) of
BFFM_INITIALIZED:

DialogComponent.Initialize(DialogHandle);

BFFM_SELCHANGED:

TkbBrowseForFolderDialog(DialogComponent).Change(

DialogHandle, PItemIDList(PIDL));

end;
end;

{ Always return 0. }
Result := 0;

end;

Figure 7: Setting the root folder for SHBrowseForFolder.
function, and therefore has no Self variable to refer to. A second issue
was making this “alien” function capable of calling the component’s
event dispatch methods. These are protected access, and technically
not available from outside the component. To solve this problem, we
exploited a little-known feature of Delphi. Regardless of the specified
access level, all of an object’s data members and methods are available
to any code contained in the same unit. This allows the callback to
directly call the TkbBrowseForFolderDialog class’ protected event dis-
patch method. This would not have been possible if the callback was
implemented in a different unit.

The fact that the callback function receives the dialog box’s handle
allows us to cheat the system a little more. The SHBrowseForFolder
function has no means of directly specifying the dialog box’s title bar
caption. However, because we can store the handle after the
BFFM_INITIALIZED callback invocation, we can use the
SetWindowText API function to set the dialog box’s caption to our
desired value. This is exactly what we do in the component’s Initialize
method, before calling the event handler — a little sly, and it works very
well. Having the window handle offers a great deal of leverage to a
knowledgeable Windows programmer. In fact, you could exploit this to
further modify the dialog box and its various child windows if you like
resizing, changing text, sending messages, receiving notifications, and so
forth. The details of these enhancements will be left as an exercise.

Conclusion
As we stated last month, these standard shell dialog boxes provide the
ability to integrate your application with the Windows shell. You can
use them as drop-in solutions to common problems, saving time and
improving the polish of your applications. The component and func-
tion wrappers give you these almost unknown function interfaces in
convenient Delphi style, making these useful dialog boxes almost
trivial to incorporate. Have fun, and write something amazing! ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\MAY \DI9905KB.

Kevin J. Bluck is an independent contractor specializing in Delphi development.
He lives in Sacramento, CA with his lovely wife Natasha. He spends his spare
time chasing weather balloons and rockets as a member of JP Aerospace
(http://www.jpaerospace.com), a group striving to be the first amateur organiza-
tion to send a rocket into space. Kevin can be reached via e-mail at
kbluck@ix.netcom.com.

James Holderness is a software developer specializing in C/C++ Windows
applications. He also runs a Web site on undocumented functions in Windows 95
(http://www.geocities.com/SiliconValley/4942). He is currently working for
FerretSoft LLC (http://www.ferretsoft.com), where he helps create the Ferret line
of Internet search tools. James can be reached via e-mail at
james@ferretsoft.com or jholderness@geocities.com.

http://www.jpaerospace.com
http://www.geocities.com/SiliconValley/4942
http://www.ferretsoft.com

19 May 1999 Delphi Informant

Algorithms
Delphi 1-4 / Graphics

By Rod Stephens

Figure 1: A map and its adjacen
Map Coloring
A Look at Four- and Five-color Algorithms

A map can be an incredibly useful tool, particularly if you don’t like to stop and ask
for directions. A complicated map can be quite confusing, however. For hundreds of

years, cartographers have been making maps easier to read by displaying different
countries or regions in different colors. If no two adjacent regions have the same color,
it’s much easier to see where one ends and the next begins.
In 1853, F. Guthrie speculated that it was possi-
ble to color any map this way using, at most,
four colors. It wasn’t until 1976, 123 years later,
that this fact was proven by Appel and Haken.
Unfortunately, the proof is computer assisted. It
uses a program to exhaustively examine a huge
number of graphs, and doesn’t provide an effi-
cient algorithm for four-coloring a map.

This article describes two algorithms for color-
ing maps (both are available for download; see
end of article for details). The first is a some-
what inefficient algorithm that four-colors a
map. While the algorithm is theoretically ineffi-
cient, in practice, it is quite fast for maps with a
reasonably large number of regions.

The second alternative is an efficient algorithm that
colors a map using five colors. Whether you color a
map with four or five colors usually doesn’t matter.
The only reason you might need to use exactly four
colors is if you have a somewhat unusual computer
that can display only four colors, or if you are try-
ing to impress your friends with your algorithmic
prowess. In these cases, use the inefficient four-
coloring algorithm, and be patient.

Exhausting Work
One way to four-color a map is to simply exam-

ine all the possible combi-
nations of colors for

the regions until
you find a com-
bination that
works. If there
are R regions on
the map, there
are R 4 possible
combinations of
colors. If R iscy graph.
large, this can be a huge number of combina-
tions. For example, if R is only 10, R 4 is 20,000.
Because the program searches all these combina-
tions in a rather simple-minded manner, this is
called an exhaustive search.

The first step in any map-coloring algorithm is
to convert the map into an adjacency graph. Each
node in the graph corresponds to a region on the
map (the two terms are used interchangeably in
the rest of this article). Two nodes in the graph
are connected with a link if their regions share a
border in the map. Figure 1 shows a small map
and its corresponding adjacency graph.

The example program Color4 uses an exhaus-
tive search to four-color maps (see Figure 2).
Much of the program’s code is dedicated to
loading, editing, drawing, and otherwise manip-
ulating maps. This code is long and irrelevant
to the map-coloring algorithm, so it’s not
described here.

Color4 uses the TRegion class to store informa-
tion about regions. The code for this class is
shown in Figure 3, with region loading, editing,
and other irrelevant routines omitted. TRegion’s
points array stores the points that define the
region’s borders. The program uses this array to
draw the region. It also compares the points in
two regions’ borders to see if the regions are adja-
cent. The neighbors TList contains a list of the
adjacent regions. This list gives the links between
the nodes in the adjacency graph. The color_number
variable holds the index of the color for the region.
When the algorithm is finished, this will be a num-
ber between 1 and 4.

As far as the map-coloring algorithm is con-
cerned, TRegion provides only two interesting

Algorithms
methods: HasLine and CheckNeighbor. HasLine returns True if
the region’s border contains a specific line segment.
CheckNeighbor uses HasLine to see if a specified region is adja-
cent to this region. For each border segment in this region,
CheckNeighbor calls the other region’s HasLine function to see if
the regions share the segment. If HasLine ever returns True, the
20 May 1999 Delphi Informant

Figure 2: The example program Color4 uses an exhaustive
search to four-color maps.
regions are neighbors, so the procedure adds the two regions to
each other’s neighbor list.

The program’s TMapForm class includes only two interesting class vari-
ables: regions and colors. The variable regions is a TList object that holds a
list of all the regions on the map. The colors array is an array of color
values that the program uses to color the regions. The value colors[0] is a
background color used for regions that haven’t yet been assigned colors.
For example, when you first load a map, all the regions have this color.

TMapForm has three routines that deal with map coloring:
AssignColors, FindNeighbors, and AssignOneColor.

When the user invokes the Color Nodes command from the Color

menu, the program invokes the AssignColors procedure, shown in
Figure 4. AssignColors resets the regions’ colors and clears their
neighbor lists. It then calls FindNeighbors to find the regions’ cur-
rent neighbors. AssignColors then assigns an arbitrary color to node
0 in the graph. It doesn’t matter which color the program uses for
this first node. The color helps determine the colors of the other
nodes, but a solution is possible no matter what color is used first.

The procedure then calls function AssignOneColor, passing it the
parameter 1. That tells AssignOneColor to begin assigning colors
type
// Array of points.
TPointArray = array [1..1000000] of TPoint;

// Pointer to array of points.
PPointArray = ^TPointArray;

// Map region class.
TRegion = class

public
// # points on the region's border.
num_points : Integer;

// The points on the region's border.
points : PPointArray;

// List of neighboring TRegions.
neighbors : TList;

// Region number starting with 0.
number : Integer;

// Color number for the region.
color_number : Integer;

constructor Create; virtual;
...

// Region loading, editing, etc. declarations omitted.

function HasLine(a1, b1, a2, b2: Integer): Boolean;

procedure CheckNeighbor(rgn: TRegion);

procedure AddNeighbor(nbr: TRegion);

end;

// Set some defaults.
constructor TRegion.Create;

begin inherited Create;

num_points := 0;

neighbors := TList.Create;

number := -1;

color_number := 0;

end;

// Return True if the region contains this line segment.
function TRegion.HasLine(a1, b1, a2, b2: Integer): Boolean;

var
i, x1, y1, x2, y2 : Integer;

begin
// Assume we will find it.
Result := True;

Figure 3: The TRegion class.
x1 := points^[1].X;

y1 := points^[1].Y;

for i := 2 to num_points do begin
x2 := points^[i].X;

y2 := points^[i].Y;

if ((x1=a1) and (y1=b1) and (x2=a2) and (y2=b2)) then
Exit;

if ((x2=a1) and (y2=b1) and (x1=a2) and (y1=b2)) then
Exit;

x1 := x2;

y1 := y2;

end;

// We didn't find the line.
Result := False;

end;

// See if this region is adjacent to the indicated one.
// If so, add the regions to each other's adjacency lists.
procedure TRegion.CheckNeighbor(rgn : TRegion);

var
i, x1, y1, x2, y2 : Integer;

begin
x1 := points^[1].X;

y1 := points^[1].Y;

for i := 2 to num_points do begin
x2 := points^[i].X;

y2 := points^[i].Y;

if (rgn.HasLine(x1, y1, x2, y2)) then
begin

// They are neighbors. Add them to each other's
// adjacency lists.
neighbors.Add(rgn);

rgn.neighbors.Add(Self);

Exit;

end;
x1 := x2;

y1 := y2;

end;
end;

// Region loading, editing, etc. routines omitted.
...

Algorithms
to the nodes, starting with node 1. How that assigns colors to all
the nodes is described a little later.

The FindNeighbors procedure, shown in Figure 5, examines every
pair of regions. It invokes one of the pair’s CheckNeighbor proce-
dures to see if the two regions are neighbors. If they are,
CheckNeighbor adds them to each other’s neighbor lists.

The heart of the exhaustive search is the AssignOneColor function,
shown in Figure 6. This function takes as a parameter the index of
the next region it should consider. If that index is greater than the
largest index of any region, all the nodes have been assigned colors
successfully. That means the current assignment of colors is a valid
four-coloring. Function AssignOneColor sets its return value to True
to indicate that it found a valid coloring, then exits.

If it has not yet found a valid coloring, the function tries to give the
region it is considering each of the four colors in turn. For each
color, the function determines whether one of the region’s neighbors
21 May 1999 Delphi Informant

// Four-color the map.
procedure TMapForm.AssignColors;

var
rgn_i : Integer;

rgn : TRegion;

begin
// Reset all the colors and clear the neighbor lists.
for rgn_i := 0 to regions.Count - 1 do begin

rgn := regions.Items[rgn_i];

rgn.neighbors.Clear;

rgn.color_number := 0;

end;
// Make the adjacency lists.
FindNeighbors;

// Only continue if there are regions.
if (regions.Count > 0) then

begin
// Assign the first region a color.
rgn := regions.Items[0];

rgn.color_number := 1;

// Assign the other colors using an
// exhaustive search.
if (not AssignOneColor(1)) then

ShowMessage(

'Error: Could not find a valid coloring.');

end;
end;

Figure 4: The AssignColors procedure four-colors the map.

// Create the adjacency lists for the regions.
procedure TMapForm.FindNeighbors;

var
i1, i2 : Integer;

rgn1, rgn2 : TRegion;

begin
// Compare each region to every other and see if they
// are adjacent.
for i1 := 0 to regions.Count - 2 do begin

rgn1 := regions.Items[i1];

for i2 := i1 + 1 to regions.Count - 1 do begin
rgn2 := regions.Items[i2];

rgn1.CheckNeighbor(rgn2);

end;
end;

// Display the neighbor lists if desired.
if (mnuShowNeighborLists.Checked) then

ShowNeighborLists;

end;

Figure 5: The FindNeighbors procedure finds the neighbors for
each region.
has already used that color. In that case, the program cannot also
assign the color to this region.

If the color isn’t already used by any of the region’s neighbors,
AssignOneColor assigns that color to this region. It then recursively calls
itself to assign a color to the region with the next index. If that call to
the function returns True, the program has found a valid four-coloring,
so this call to AssignOneColor sets its return value to True and exits.

If the recursive call returns False, the program cannot find a valid color-
ing with this region having the assigned color. The function continues to
try the other colors. If the function cannot find a valid coloring using
any of the four colors for this region, it resets the region’s color, sets its
return value to False, and exits. As the calls to AssignOneColor return
back up the call stack, they will make new color assignments for the pre-
viously colored regions, and try again to color this region. The recursion
will continue to try color combinations until it finds one that works.

The Color4 program uses this code to four-color maps. Use the File

menu to open a map file, or draw your own map. Click the left
mouse button to start a new region or add to the current region.
Click the right button to finish the region. To make two regions
neighbors, use the same end points for at least one of their edges.
// Assign a color for the node with the indicated index.
// Recursively assign colors for the other nodes. Return
// True if we find a valid assignment.
function TMapForm.AssignOneColor(rgn_i: Integer): Boolean;

var
color_num, nbr_i : Integer;

rgn, nbr : TRegion;

begin
// If rgn_i >= regions.Count, then all regions have been
// assigned and we have a valid solution.
if (rgn_i >= regions.Count) then

begin
Result := True;

Exit;

end;
// Try each possible color for this region.
rgn := regions.Items[rgn_i];

for color_num := 1 to 4 do begin
// See if this color is available for this region.
for nbr_i := 0 to rgn.neighbors.Count - 1 do begin

// See if this neighbor has used the color already.
nbr := rgn.neighbors.Items[nbr_i];

if (nbr.color_number = color_num) then Break;

end;
// See if the color is usable.
if (nbr_i >= rgn.neighbors.Count) then

begin
// Assign this color to the region.
rgn.color_number := color_num;

// Recursively assign colors to the other regions.
if (AssignOneColor(rgn_i + 1)) then

begin
// We found a valid assignment.
Result := True;

Exit;

end;
end;

// If everything worked and we found a complete
// assignment, we have already exited. Otherwise
// we continue trying other colors.

end;
// Blank our color so we can try again later.
rgn.color_number := 0;

// We found no valid assignments.
Result := False;

end;

Figure 6: The AssignOneColor procedure recursively assigns
colors to regions until it finds a valid four-coloring.

Algorithms

Figure 7: The example program Color5 five-colors maps.

A
X

B AB

Figure 8: Combining nodes in an adjacency graph.
When you have loaded or created a map, select the Color Nodes

command from the Color menu, or press 9.

Planar Postulates
The four-coloring algorithm used by Color4 exhaustively examines color
combinations until it finds one that works. For reasonably small prob-
lems, this algorithm is fast, and the program has no trouble. If a map
contains many regions, however, exhaustive search can be impractical.

If the map contains R regions, there are R4 possible color combinations.
If R is 1000, R 4 is one trillion. If your computer can examine one mil-
lion combinations per second, it will take more than 11 days to search
them all. The program will probably find a valid coloring before it
searches all the combinations, but there is no guarantee of quick success.
In cases like this, you can use the five-coloring algorithm demonstrated
by the Color5 program, shown in Figure 7. This program doesn’t always
find a four-coloring, but it’s faster for very large maps.

In many ways, the example program Color5 is similar to the example
program Color4; both use the same TRegion class and the same code
to load and manipulate maps. Their differences are in how they find
map colorings. Color5 uses two key facts about planar graphs to pro-
duce the five-coloring. A graph is planar if it can be drawn in a flat
plane without any links crossing each other. Adjacency graphs, such
as the one shown in Figure 1, are always planar.

Fact 1
The first useful fact about planar graphs is that nodes with fewer
than five neighbors are easy to color. First, remove the node from
the graph and color the remaining nodes. When they are colored,
restore the removed node and look at its neighbors. Because the
node has fewer than five neighbors, the neighbors cannot have used
up all five colors. Pick an unused color and assign it to the node.

This fact alone would be enough to color the entire graph if every node
had fewer than five neighbors. In fact, removing a node reduces the
number of neighbors of each of its neighbors, so some of them may
now have fewer than five neighbors. The program can continue like this
indefinitely unless it eventually reaches a state where every node has at
least five neighbors. For example, every node in the graph shown in
Figure 1 has exactly five neighbors.

Fact 2
The second fact about planar graphs is useful when every node in
the graph has at least five neighbors. When that is the case, it can be
22 May 1999 Delphi Informant
shown that there is a node X with exactly five neighbors, where two
neighbors, A and B, are not neighbors of each other, and each has at
most seven neighbors of its own. For example, the graph on the left
in Figure 8 shows such nodes A, X, and B. Node X has five neigh-
bors. Its neighbors A and B are not neighbors of each other, and
they each have no more than seven neighbors.

Because nodes A and B are not neighbors, the program can assign
them the same color. To continue processing the graph, the program
removes node X and combines nodes A and B into a single node. It
then continues coloring the remaining nodes. Figure 8 shows this
combination process. Notice that nodes that were neighbors of both
nodes X and node A or B have fewer neighbors than they did before.
Now there are some nodes with fewer than five neighbors, so the pro-
gram can use the first observation to continue processing the graph.

When it has finished processing the smaller graph, the program
restores nodes X, A, and B. It gives nodes A and B the color it gave
the combined node in the smaller graph. Because node X has exactly
five neighbors, and nodes A and B have the same color, X’s neigh-
bors can have used at most four of the five colors available. Pick one
of the remaining colors and assign it to node X.

Five-coloring
The example program Color5 uses these two facts to five-color maps.
As it removes nodes from the graph, it places information about the
nodes on a stack. When the graph is empty, the program removes the
items from the stack in last-in-first-out (LIFO) order, using the infor-
mation to assign colors to the nodes. In English, the algorithm is:

1) While the graph is not empty, do:
a. If there is a node N with fewer than 5 neighbors, then:

i) Add node N and its current neighbor list to the stack.
ii) Remove node N from the graph.

b. Else:
i) Find a node X with exactly five neighbors, two of which (A

and B) are not adjacent and have at most seven neighbors.
ii) Add node N and its current neighbor list to the stack.
iii) Remove node N from the graph.
iv) Add nodes A and B to the stack.
v) Combine nodes A and B by adding node B’s neighbors to

node A’s neighbor list.
vi) Remove node B from the graph.

2) While the stack is not empty, do:
a. If the next pair of objects on the stack is a node and its neigh-

bor list saved in step 1.a.i or step 1.b.ii, then:
i) Examine the node’s neighbors and assign the node a color

that is not used by its neighbors.
b. Else (the next pair contains two nodes A and B saved in step

1.b.iv):
i) Assign node B the same color already assigned to node A.

Algorithms
The main difference between Color4 and Color5 is the AssignColors
procedure, shown in Listing One (beginning on this page). This ver-
sion of the procedure starts by creating two TList objects. The
orig_regions list will contain a copy of the original region list. The
procedure uses this list to restore the graph after it has torn it apart
during the color calculations. The second TList object is the stack
object. The program copies the region list into orig_regions, resets
each region’s color, and empties each region’s neighbor list. It then
calls procedure FindNeighbors to create the new neighbor lists.

While the regions list holds at least one region, the program
removes a node from the graph. It first searches for a node with
fewer than five neighbors. If it finds one, it adds the node and its
neighbor list to the stack. It then calls the region’s
RemoveFromGraph procedure to remove the node from the neighbor
lists of its neighbors. The program leaves the node’s neighbor list
alone so it will later be able to find the node’s neighbors.

If the program cannot find a node with fewer than five neighbors, it
calls the FindNonAdjacent function for regions until it finds a node with
five neighbors, two of which are non-adjacent with at most seven neigh-
bors of their own. It saves that region and its neighbor list on the stack,
and removes the region from the graph. It then calls the AssociateWith
procedure to associate one of the neighbor nodes with the other. It adds
both neighbors to the stack, and removes the first from the graph.

Finally, when the region list is empty, the program empties the stack.
When it finds a node and its neighbor list on the stack, the program
assigns the node a color not already taken by its neighbors. When it
finds two nodes, it assigns the second node the same color as the first
node. AssignColors finishes by restoring the original region list.

The last new pieces of Color5 are support routines provided by the
TRegion class, shown in Listing Two (beginning on page 24). The
RemoveFromGraph procedure searches a node’s neighbors and
removes the node from the neighbors’ neighbor lists. The
FindNonAdjacents function searches a node’s neighbors for two non-
adjacent neighbors that have at most seven neighbors. The function
returns True if it finds two such neighbors.

The AddNeighbor procedure checks whether a node is already the neigh-
bor of another node. If it isn’t, the routine adds each node to the other’s
neighbor list. Finally, the AssociateWith procedure associates one node
with another. For each neighbor in the first node’s neighbor list, the rou-
tine uses AddNeighbor to add the second node to the neighbor’s list. This
merges the two nodes in the graph, as shown in Figure 8. The example
program Color5 uses this code to five-color maps. The interface is very
similar to that of the example program Color4. Load or create a map,
and press 9 to five-color it.

Conclusion
These two algorithms are useful tools for any amateur cartographer.
The five-coloring algorithm used by Color5 is quite fast. At each
step, it removes one node from the graph, so if the graph contains N
nodes, the program can only run for N steps. The steps are some-
what complicated, but they are far shorter than the steps that may be
needed by an exhaustive search.

Eventually, the five-color algorithm empties the graph, and can use the
information in its stack to color the nodes one at a time. Even for enor-
mous maps, this is fast, and the algorithm can finish in a reasonable
amount of time. The exhaustive search used by Color4 can be slow for
large maps. In practice, however, it is quite fast for maps of reasonable
23 May 1999 Delphi Informant
size. Because it produces a slightly better result and is much simpler than
the other algorithm, exhaustive search is usually a better choice. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\MAY \DI9905RS.

Rod Stephens is the author of several books, including Ready-to-Run Delphi 3.0
Algorithms [John Wiley & Sons, 1998]. You can reach him at RodStephens@
delphi-helper.com, or see what else he’s up to at http://www.delphi-helper.com.
Begin Listing One — AssignColors
// Five-color the map.
procedure TMapForm.AssignColors;

var
orig_regions, stack, nbrs : TList;

i, rgn_num, n1_num : Integer;

rgn, n1, n2 : TRegion;

color_used : array [1..5] of Boolean;

obj : TObject;

begin
// Prepare the lists we need.
orig_regions := TList.Create;

stack := TList.Create;

// Save a copy of the region list because we will
// mess it up. Also reset the region's colors and
// clear their adjacency lists.
for i := 0 to regions.Count - 1 do begin

rgn := regions.Items[i];

orig_regions.Add(rgn);

rgn.color_number := 0;

rgn.neighbors.Clear;

end;
// Make the adjacency lists.
FindNeighbors;

// Push regions onto the stack.
while (regions.Count > 0) do begin

// Look for a region with degree < 5.
rgn := nil;
for rgn_num := 0 to regions.Count - 1 do begin

rgn := regions.Items[rgn_num];

if (rgn.neighbors.Count < 5) then Break;

end;
// If we found node with fewer than 5 neighbors,
// add it and its neighbor list to the stack.
if (rgn_num < regions.Count) then

begin
// Push rgn and its neighbor list onto the stack.
stack.Add(rgn);

stack.Add(rgn.Neighbors);

// Remove rgn from the graph.
rgn.RemoveFromGraph;

regions.Delete(rgn_num);

end
else

begin
// There is no node with degree < 5. Search
// for one with degree = 5 and 2 non-adjacent
// nodes n1 and n2 with degree <= 7.
for rgn_num := 0 to regions.Count - 1 do begin

rgn := regions.Items[rgn_num];

if (rgn.FindNonAdjacents(n1, n2)) then Break;

end;
// If we still did not find one, something
// is wrong.
if (rgn_num >= regions.Count) then

begin

http://www.delphi-helper.com

Algorithms
ShowMessage('Error finding node to remove.');

Break;

end;
// Save rgn and its adjacency list.
stack.Add(rgn);

stack.Add(rgn.neighbors);

// Remove rgn from the graph.
rgn.RemoveFromGraph;

regions.Delete(rgn_num);

// Associate n1 and n2.
n1.AssociateWith(n2);

// Push n1 and n2 onto the stack.
stack.Add(n1);

stack.Add(n2);

// Remove n1 from the graph.
n1.RemoveFromGraph;

// Find n1 in the region list.
for n1_num := 0 to regions.Count - 1 do begin

n2 := regions.Items[n1_num];

if (n1 = n2) then
begin

regions.Delete(n1_num);

Break;

end;
end;

end; // End if we did not find a node with degree < 5.
end; // End while (regions.Count > 0) do.

// The graph is empty. Produce the coloring.

// Pop regions off the stack and color them.
while (stack.Count > 0) do begin

// See if the next item in the stack is a
// neighbor list or a region.
obj := stack.Items[stack.Count - 1];

if (obj.ClassNameIs('TList')) then
begin

// Get the neighbor list.
nbrs := stack.Items[stack.Count - 1];

stack.Delete(stack.Count - 1);

// Get the corresponding region.
rgn := stack.Items[stack.Count - 1];

stack.Delete(stack.Count - 1);

// Assign rgn a color different from those
// used by its neighbors.
for i := 1 To 5 do

color_used[i] := False;

for n1_num := 0 to nbrs.Count - 1 do begin
n1 := nbrs.Items[n1_num];

color_used[n1.color_number] := True;

end;
// See which color is left.
for i := 1 to 5 do

if (not color_used[i]) then Break;

// If we did not find an unused color,
// something is wrong.
if (i > 5) then

ShowMessage('Error finding color for node.')

else
rgn.color_number := i;

// End if the next item in the stack
// is a neighbor list.

end
else

begin
// The next item in the stack is a region.
// Get the region.
n1 := stack.Items[stack.Count - 1];

stack.Delete(stack.Count - 1);

// Get the associated region.
n2 := stack.Items[stack.Count - 1];

stack.Delete(stack.Count - 1);

// Assign n2 the same color as n1.
n2.color_number := n1.color_number;

end; // End if neighbor list/node ...
end; // End while (stack.Count > 0) do
24 May 1999 Delphi Informant
// Restore the original region list.
regions.Destroy;

regions := orig_regions;

end;

End Listing One
Begin Listing Two — TRegion
// Remove the node from the graph.
procedure TRegion.RemoveFromGraph;

var
nbr_num : Integer;

nbr : TRegion;

begin
// Remove links from neighbors to here.
for nbr_num := 0 to neighbors.Count - 1 do begin

nbr := neighbors.Items[nbr_num];

nbr.RemoveNeighbor(Self);

end;
end;

// Find two mutually non-adjacent neighbors with
// degree <= 7, if they exist.
function TRegion.FindNonAdjacents(

var n1, n2: TRegion): Boolean;

var
n1_num, n2_num, n3_num : Integer;

n3 : TRegion;

non_adjacent : Boolean;

begin
// If this node has more than 5 neighbors, it won't do.
if (neighbors.Count > 5) then

begin
Result := False;

Exit;

end;
for n1_num := 0 to neighbors.Count - 2 do begin

// See if n1 has degree <= 7.
n1 := neighbors.Items[n1_num];

if (n1.neighbors.Count <= 7) then
begin

// n1 has degree <= 7. Find another.
for n2_num:=n1_num+1 to neighbors.Count-1 do begin

// See if n2 has degree <= 7.
n2 := neighbors.Items[n2_num];

if (n2.neighbors.Count <= 7) then
begin

// See if n1 and n2 are non-adjacent.
non_adjacent := True;

for n3_num := 0 to
n1.neighbors.Count-1 do begin

n3 := n1.neighbors.Items[n3_num];

if (n3 = n2) then
begin

// They are adjacent.
non_adjacent := False;

Break;

end;
end;
// If the nodes are non-adjacent, we're done.
if (non_adjacent) then

begin
Result := True;

Exit;

end;
end; // End if (n2.neighbors.Count <= 7) ...

end; // End for n2_num = n1_num + 1 to ...
end; // End if (n1.neighbors.Count <= 7) then

end; // End for n1_num = 0 to neighbors.Count - 2 do
// We did not find a usable pair of nodes.
Result := False;

end;

// If this region is not yet in our neighbor list, add it
// and add us to its list.
procedure TRegion.AddNeighbor(nbr : TRegion);

Algorithms
var
n1_num : Integer;

n1 : TRegion;

begin
// Examine our neighbors.
for n1_num := 0 to neighbors.Count - 1 do begin

n1 := neighbors.Items[n1_num];

// If the node is in the neighbors list, do nothing.
if (n1 = nbr) then Exit;

end;
// Update the neighbor lists.
neighbors.Add(nbr);

nbr.neighbors.Add(Self);

end;

// Associate this node with the target. Copy this node's
// neighbors into target's neighbor list.
procedure TRegion.AssociateWith(target : TRegion);

var
n1_num : Integer;

n1 : TRegion;

begin
// Examine all neighbors.
for n1_num := 0 to neighbors.Count - 1 do begin

n1 := neighbors.Items[n1_num];

if (n1 <> target) then
begin

// Add n1 to target's neighbor list and
// vice versa.
n1.AddNeighbor(target);

end;
end;

end;

End Listing Two
25 May 1999 Delphi Informant

On the ’Net
Delphi 3, 4 / Interfaces / OOP / HTML

By Keith Wood

{ Base clas
THTMLBase =

private
FStyle:

FId: str
FTagClass

FLanguage

FDirectio

FTitle:

FAccessKe

FTabIndex

FOtherAtt

protected
function

HResul

function
function
property
property
property
property
property

read F

property
property

read F

property
read F

property
read F

function
public

function
end;

Figure 1: T
the HTML-g

26 May 1999 Delphi Informant
An HTML Generator
Part I: Putting the Delphi Interface Construct to Work

In the May, 1996 issue of Delphi Informant, I introduced the THTMLWriter component in
the article “An HTML Generator.” This component allowed us to generate HTML from a

Delphi program, with the full power and flexibility that a Delphi program provides. The
approach used a single component to encapsulate the required behavior, and defined
methods to generate the HTML.
s

st
in
:

:

n

st
y

:

r

Q

t

_

_

S

I

T

L

D

D

T

A

A

T

T

O

O

B

A

h
e

Since the release of Delphi 3, we’ve had an alter-
nate way to implement the generation of HTML
— a more object-oriented approach. Delphi 3
introduced us to the interface, an abstract defin-
 that implements the IHTMLProducer interface. }
class(TObject, IHTMLProducer)

ring;
g;
 string;
 string;
: THTMLDirection;

ring;
: Char;

 THTMLNumber;

ibutes: string;

ueryInterface(const IID: TGUID; out Obj):

; stdcall;
AddRef: Integer; stdcall;
Release: Integer; stdcall;
tyle: string read FStyle write FStyle;

d: string read FId write FId;

agClass: string read FTagClass write FTagClass;

anguage: string read FLanguage write FLanguage;

irection: THTMLDirection

irection write FDirection;

itle: string read FTitle write FTitle;

ccessKey: Char

ccessKey write FAccessKey;

abIndex: THTMLNumber

abIndex write FTabIndex;

therAttributes: string
therAttributes write FOtherAttributes;

aseAttributesAsHTML: string;

sHTML: string; virtual; stdcall;

e THTMLBase class declaration, which is the basis of
nerating hierarchy.
ition of a set of methods that an object can
express. In this article, we’ll redesign the HTML
generator as a set of objects, the IHTML collec-
tion, that encapsulates one or more HTML tags
(this article assumes a basic knowledge of
HTML). We’ll also update these objects to take
into account changes for HTML 4.

Interfaces
An interface defines a set of methods that deter-
mines the interactions expected of an object.
The methods are not implemented in the inter-
face (in this way, it’s similar to an abstract class),
but must be coded for each object that expresses
that interface. Other differences from abstract
classes are that interfaces can only have method
and property declarations, and all properties
must be accessed through functions or proce-
dures. Also, all attributes must be public, and
interfaces can have no constructor or destructor.

Delphi has a single inheritance model, which
means that each class can be derived from only
one other class, inheriting the latter’s properties
and methods. Interfaces allow us to simulate
multiple inheritance through an object, express-
ing one or more of these sets of definitions.
Like the normal class hierarchy, interfaces form
their own hierarchies and are all ultimately
derived from IUnknown. This interface defines
the basic functionality required to discover what
interfaces are available in an object, and to ref-
erence count accesses to them.

Our interface, IHTMLProducer, consists of a
single method, AsHTML, that returns the con-

{ Base container class for HTML. Any number of HTML
producers can be added to this container and each will
generate its HTML in turn. }

THTMLContainer = class(THTMLBase)
private

lstHTML: TList;

FOwnContents: Boolean;

function GetCount: Word;

function GetItems(Index: Integer): TObject;

public
constructor Create;

destructor Destroy; override;
function AsHTML: string; override; stdcall;
function ContentsAsHTML: string;
procedure Add(objHTML: TObject);

procedure Clear;

property Count: Word read GetCount;

property Items[Index: Integer]: TObject

read GetItems; default;
property OwnContents: Boolean

read FOwnContents write FOwnContents;

end;

Figure 2: The THTMLContainer class declaration, which is the
basis for HTML tags that contain other tags.

On the ’Net
tents of the implementing object formatted for inclusion in an
HTML document. Its definition is as follows:

// The HTML producing interface; a single function that
// returns HTML formatted text.
IHTMLProducer = interface(IUnknown)

['{ 1265C6A2-5791-11D2-A65A-0000C08699E7 }']
function AsHTML: string; stdcall;

end;

Positioning the cursor at the correct spot and pressing
CSGGG enters the GUID (globally unique identifier) that
identifies this interface. This value is required because later, we’ll
be testing for the existence of this interface within an object. The
AsHTML function should be declared with the stdcall directive,
because it may be called across process boundaries.

Any class that expresses this interface must define a function that
implements this one routine. We don’t require anything else from
that class, and don’t care what else it can or can’t do.

THTMLBase
The base of our HTML-generating hierarchy is THTMLBase. This
class implements the IHTMLProducer interface and declares the
basic attributes that exist in most of the HTML tags (see Figure 1).
It’s derived directly from TObject, and we make use of the inherited
GetInterface method to implement the QueryInterface function
required by the IUnknown interface.

Normally, interfaces are reference counted, i.e. the number of ref-
erences to each is tracked, and the object that implements the
interface is destroyed when no one can access it any longer. This
works well when you’re dealing with the objects only through their
interfaces. For our purposes, however, we’re creating objects,
changing properties specific to them, then generating the HTML
through the interface. We control the creation and destruction of
the objects and don’t want the interface’s scheme to interfere with
that. To this end, we implement the _AddRef and _Release func-
tions defined in the IUnknown interface to return a value of -1,
disabling any processing dependent on them.

The basic HTML attributes declared in the THTMLBase class are
set up as simple properties, directly referencing internal variables.
We aren’t concerned with changes to these values until we actually
generate the HTML. They’re defined as protected so they’re not
externally visible, but they can be exposed by subclasses. The
BaseAttributesAsHTML method formats these values as HTML tag
attributes, and returns that string. Again, it’s protected so that it can
be used only by subclasses.

At this stage, the AsHTML method required by the interface does
nothing, returning a blank string. This method is overridden by
each subclass to generate the HTML tag that it encapsulates.

THTMLContainer
Many HTML tags, such as the paragraph and table tags, contain
other HTML tags. Because this is common, we create a new class
that provides this functionality. Therefore, any class derived from
this one automatically inherits the containership abilities.

THTMLContainer extends THTMLBase and maintains an inter-
nal list of objects that it contains (see the class declaration in
Figure 2). It contains methods to add objects to the list and to
clear it out, as well as properties to determine the number of
27 May 1999 Delphi Informant
items currently held and to access each in turn. As an object is
added to the internal list, it’s checked to ensure that it expresses
the IHTMLProducer interface. An exception is raised if this isn’t
the case.

The ContentsAsHTML method calls the AsHTML method of
each of the objects in the list in turn (hence the need to check
their type on adding), and combines the results. It’s declared as
protected so it’s available to subclasses without being generally
visible. The AsHTML method for this object simply calls the
ContentsAsHTML method.

To facilitate memory management, we add another property to
control what happens to the contained objects when the contain-
er is cleared or destroyed. When OwnContents is True, all the
objects in the list are freed when the list is cleared. When it’s
False, the contained objects are left alone. By default, the
OwnContents property is set to True. Because the HTML docu-
ment itself is a container, we only need to keep a reference to it,
and free it when we’re finished. The document object, in turn,
frees all the objects it contains, removing the need to track each
individually.

Generating HTML
The actual HTML generation is done through the AsHTML
function, which is declared in the interface. Each subclass over-
rides this method to produce HTML appropriate to the tag it
encapsulates. Because the object generates all the HTML it
requires, there’s no need to keep track of opening and closing tags
(with the possibility that these will become unsynchronized).

As an example, let’s look at the paragraph tag. This is wrapped in
the THTMLParagraph class (see Figure 3). It declares two prop-
erties of its own, Alignment and Text, and exposes several of the
basic properties from THTMLBase. Its constructor allows us to
create a basic paragraph that contains some text, while initializ-
ing the Alignment property to the default value.

THTMLParagraph subclasses THTMLContainer, which means we
can add other tags to the paragraph. All these different elements are
combined within the AsHTML function. It first specifies the tag

On the ’Net
header for an HTML paragraph (<p), and follows this with the value
of the Alignment property (if not the default), and those of the basic
attributes that have been set (through the BaseAttributesAsHTML
method). This completes the opening paragraph tag, denoted by >.

The contents of the paragraph are added next. This comes in two
parts: First, the Text property, which provides a quick way of adding
28 May 1999 Delphi Informant

{ An HTML paragraph. }
THTMLParagraph = class(THTMLContainer)
private

FText: string;
FAlignment: THTMLAlignmentHoriz;

public
constructor Create(sText: string); virtual;
function AsHTML: string; override; stdcall;
property Text: string read FText write FText;

property Alignment: THTMLAlignmentHoriz

read FAlignment write FAlignment;

property Style;

property Id;

property TagClass;

property Language;

property Direction;

property Title;

property OtherAttributes;

end;

{ Initialise. }
constructor THTMLParagraph.Create(sText: string);
begin

inherited Create;

FText := sText;

FAlignment := ahDefault;

end;

{ Return formatted HTML. }
function THTMLParagraph.AsHTML: string;
begin

{ Check for errors.}
if (heStrictHTML4 in HTMLErrorLevel) and

(Alignment <> ahDefault) then
raise EHTMLError.Create(

Format(sDeprecatedAttribute, ['p']));

{ Generate HTM. }
Result := '<p' + AlignHorizAttribute('align',Alignment) +

BaseAttributesAsHTML + '>' + EncodeSpecialChars(Text) +

ContentsAsHTML + '</p>'#13#10;

end;

Figure 3: The THTMLParagraph class encapsulates an HTML
paragraph.

var
htm: THTMLDocument;

begin
try

htm := THTMLDocument.Create(

'IHTML Objects Demonstration');

htm.AddHeaderTag(THTMLMetadata.Create(

'Keywords', 'IHTML;Demonstration'));

htm.AddHeaderTag(THTMLComment.Create(

'This page demonstrates the IHTML objects'));

htm.Add(THTMLHeading.Create(

1, 'IHTML Objects Demonstration'));

htm.Add(THTMLParagraph.Create(

'Welcome to the demonstration of the IHTML objects.'));

memHTML.Text := htm.AsHTML;

finally
htm.Free;

end;
end;

Figure 4: Generating a simple HTML document.
straight text to the paragraph, and then the HTML from the tags
contained within this one. We use the inherited ContentsAsHTML
method to generate the latter. Note that the text is passed through a
routine that converts special characters to their HTML equivalents.
Finally, we add the closing paragraph tag, </p>.

THTMLDocument
Producing an HTML document then becomes the task of the
THTMLDocument object. It has properties that allow us to specify
the header details for the document, including the title (mandatory),
a base document, and a style sheet. Methods allow us to add addi-
tional tags to the header block; these can be link specifications,
metadata, scripts, or objects.

Additional properties provide for the setting of the document’s color
scheme (although this approach is now deprecated) and/or a back-
ground image. The THTMLDocument object is derived from
THTMLContainer, and so the body text and other content are
placed with the Add method.

Because of the default behavior that containers free the objects they
contain on their own destruction, we only need to keep track of the
document itself. Everything we add to it will be released once we
free the main document. Thus, we could generate a simple docu-
ment with the code in Figure 4. The resulting page is being copied
into a memo field. The full hierarchy of objects provided by the
IHTML collection is shown in Figure 5.

Merging Documents
Rather than having to generate the entire document within our
Delphi program, we can have the common HTML text in an exter-
nal file, and simply substitute for the parts that change. This is
achieved through the THTMLStream object.

It takes a stream as input, and parses it for special tags to be
replaced. These tags are identified by starting with a pound sign
(#), the same convention that Delphi uses for its page producer
components. For each such tag found, an event is generated that
allows us to specify the new value. One such tag value is built
into the object itself: the <time> tag that inserts the current date
and time. It takes an optional format attribute that can specify
the Delphi formatting string to be used. So, if we code the fol-
lowing in the HTML document:

<#time format="d mmmm, yyyy hh:nn ampm">

it might appear as:

6 November, 1998 08:23 PM

As an extension to this scheme, we can include another file into the
first one by following the pound sign with ^ (caret) and the name of
that file. The new file is also parsed in the same manner, allowing
for further substitutions.

Data Tables
To facilitate the generation of HTML tables from information in
a database table, we have the THTMLDataTable object. This is
declared in the IHTMLDB unit, because it doesn’t encapsulate
one of the basic HTML tags.

It derives from the THTMLTable object, and uses its inherited
abilities to generate the actual table HTML. The main new prop-

29 May 1999 Delphi Informant

On the ’Net
erty is DataSet, which allows us to indicate where to obtain the
data. Additional properties allow for the inclusion or exclusion of
a header row, as well as the specification of its color scheme. The
inherited abilities provide for the usual customization of the table.

The dataset attached to this object determines what data is dis-
played. All the visible fields from that source are displayed in
turn. Their formatting can be controlled through the usual
mechanisms for manipulating dataset fields. Memos have their
entire contents added to the table, while all other fields show the
DisplayText value. All fields can have a default alignment, or use
the alignment from the field itself by setting the UseFieldAlign
property to True.

Events allow for the properties of an entire row, or for each cell to
be overridden. For cells, this includes any alteration of the displayed
text itself. To ease the process of creating links within this table, we
can specify fields to be used as the hot-spot text, LinkField, and for
the destination, LinkTarget. These are then automatically formatted
as the table is generated.

Error Reporting
Each IHTML object encapsulates an HTML tag, so it can perform
its own error checking. Before generation of the HTML, the objects
check for problems, such as missing mandatory fields and deprecat-
ed tags and/or attributes.

Setting the global variable HTMLErrorLevel determines the level of
error checking. This value is a set of the levels of error reporting
required. The levels are heStrictHTML4, which checks for deprecat-
ed items in HTML 4, and heErrors, which reports missing mandato-
ry attributes. The default value is heErrors. Any errors found are
notified by raising an EHTMLError exception. This derives directly
from Exception without adding anything new.

Delphi 4 Bonuses
Delphi 4 also introduced changes to the Object Pascal language.
These include the overloading of method declarations, and the pro-
vision of default values for parameters in method calls.

To enhance the abilities of the IHTML objects we just described,
we can make use of these new capabilities. Using conditional
compiles, we can set up extensions to be used when compiled
under Delphi 4. But first we need to be able to identify when
this occurs.

All versions of Delphi define a standard symbol to identify that
version: In Delphi 2 it’s VER90, in Delphi 3 it’s VER100, and in
Delphi 4 it’s VER120. (Whatever happened to VER110?) Using
this symbol in a conditional compiler directive allows us to target
the enclosed code for that version. We extend the parameter lists
for the constructors of some of the IHTML objects under Delphi
4, allowing the more common additional attributes to be set. By
supplying default values for these, we don’t require the user to
enter them all, if they’re not necessary. For example, in the
THTMLParagraph constructor, we add parameters for the class,
ID, and inline style of the paragraph:

{ $IFDEF VER120 } { Delphi 4 }
constructor Create(sText: string; sTagClass: string = ' ';

sId: string = ''; sStyle: string = ''); virtual;
{ $ELSE }
constructor Create(sText: string); virtual;
{ $ENDIF }
THTMLBase
THTMLComment
THTMLContainer

THTMLAnchor
THTMLButton
THTMLDivision
THTMLDocument
THTMLFieldSet
THTMLForm
THTMLFrameSet
THTMLHeading
THTMLImageMap
THTMLLabel
THTMLList
THTMLListItem
THTMLNoScript
THTMLObject
THTMLParagraph
THTMLSelectField
THTMLSelectGroup
THTMLTableBase

THTMLTable
THTMLDataTable

THTMLTableCellBase
THTMLTableDetail
THTMLTableHeading

THTMLTableColumnGroup
THTMLTableRow
THTMLTableRowGroup

THTMLText
THTMLFrame
THTMLHorizRule
THTMLImage
THTMLImageMapArea
THTMLInlineFrame
THTMLInputField

THTMLButtonField
THTMLCheckboxField
THTMLFileField
THTMLHiddenField
THTMLImageField
THTMLPasswordField
THTMLRadioField
THTMLResetField
THTMLSubmitField
THTMLTextField

THTMLLineBreak
THTMLLink
THTMLMetadata
THTMLObjectParam
THTMLScript
THTMLSelectOption
THTMLStream
THTMLStyleSheet
THTMLTableColumn
THTMLTextareaField

Figure 5: The hierarchy of IHTML objects.

On the ’Net

TP = class(THTMLParagraph)
public
{ $IFDEF VER120 } { Delphi 4 }

constructor New(sText: string; sTagClass: string = '';

sId: string = ''; sStyle: string = ''); virtual;
{ $ELSE }

constructor New(sText: string); virtual;
{ $ENDIF }
end;

{ $IFDEF VER120 } { Delphi 4 }
constructor TP.New(sText: string; sTagClass: string = '';

sId: string = ''; sStyle: string = ''); virtual;
begin

Create(sText, sTagClass, sId, sStyle);

end;
{ $ELSE }
constructor TP.New(sText: string); virtual;
begin

Create(sText);

end;
{ $ENDIF }

Figure 6: Subclassing THTMLParagraph.
Then, under Delphi 4, we could code any of the following:

htm.Add(THTMLParagraph.Create('A basic paragraph.'));

htm.Add(THTMLParagraph.Create(

'A formatted paragraph.', 'format1'));

htm.Add(THTMLParagraph.Create(

'An individually formatted paragraph.', 'format1',

'para1'));

htm.Add(THTMLParagraph.Create(

'A specially formatted paragraph.', 'format1','',

'background-color: red'));

Lazy Wrappers
The objects described in this article provide the functionality necessary
to generate HTML from a Delphi program, but the class names can
be lengthy, which requires more typing. A solution to this is to pro-
duce a wrapper unit that reduces these names and makes them easier
to enter. Each class to be abbreviated is simply assigned to the new
shortened class name. Here’s an example:

type
TP = THTMLParagraph;

TH = THTMLHeading;

TA = THTMLAnchor;

Then we would be able to add a new paragraph to an HTML docu-
ment with the following statement:

htm.Add(TP.Create('A shorter paragraph call'));

To make the code even shorter, we could subclass the original class and
replace its methods with abbreviated versions as well. For example, we
could subclass THTMLParagraph, as shown in Figure 6. The imple-
mentation of these constructors is just a call to the longer original ver-
sions. Now we can have the following:

htm.Add(TP.New('An even shorter paragraph call'));

Feel free to apply this technique to whichever of the IHTML
objects you desire.

Demonstration
The demonstration program that accompanies this article allows
you to generate five documents. (The demonstration program is
available for download; see end of article for details.) In each case,
the HTML page is displayed as source on the screen, and is saved
to a file that can be opened in your browser. The name of the file
is given each time.

The first example illustrates many of the common tags used in
HTML documents. These include headings, formatted text, lists,
images, and forms. The second demonstrates the use of tables and
draws a chessboard complete with pieces (assuming that the sup-
plied graphics are located in a subdirectory called images). Next,
there is an example of a frameset document. It is based on the
example in the HTML specification and displays three frames, two
with images and the last with the source code.

HTML tables can also be generated from database tables, as the
fourth example demonstrates. The contents of the Biolife table
(minus the graphic) are displayed within the browser. Note that
the generating object automatically handles memo fields. Two
events are attached to the table creation to color every second row
light blue and the length columns red.
30 May 1999 Delphi Informant
Lastly, we show how HTML templates can be combined with
substituted text, or other documents, to generate new pages. An
event is attached to handle the replacement of the marked tags.
In each case, except for the frames example, the Delphi source
code that generated the document is available through a link at
the bottom of the created page. In the frames example, the source
code appears directly in one of the frames.

Conclusion
The interfaces introduced in Delphi 3 allow us to employ a more
object-oriented approach to the generation of HTML from a Delphi
program. Instead of the monolithic component created in the previous
effort, we now have a set of smaller, integrated objects that encapsulate
specific tags within an HTML document. Properties allow us to cus-
tomize the tags without forcing us to fill in lots of unnecessary parame-
ters in a method call. Furthermore, if the objects presented here don’t
work the way you would prefer, the object-oriented approach allows you
to extend or replace them without affecting the rest of the hierarchy.

Using interfaces means we can add the HTML generating abilities to
any object we desire, and have it interact seamlessly with the objects
previously described. These new objects can appear anywhere within
the class hierarchy and have any sort of inherited abilities. Next
month, we’ll look at more applications for this approach, including
programs for generating Pascal source code to HTML, converting a
directory structure to HTML, and producing a frameset definition
document in a more visual way. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\MAY \DI9905KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Often working
with Delphi, he has enjoyed exploring it since it first appeared. You can reach him
via e-mail at kwood@ccsc.com.

31 May 1999 Delphi Informant

DBNavigator
Data Validation / Delphi 2, 3, 4

By Cary Jensen, Ph.D.
Delphi Database Development
Part VIII: Validating Data

F or most of the past year, this column has taken a systematic look at Delphi
database development. This month’s installment continues this series with a

look at client-side data validation.
Data validation, as defined here, involves con-
firming that data entered by the user is acceptable
before permitting it to be posted to a database,
e.g. the data entered into a field (column) is with-
in an acceptable range of values, and that data has
been supplied for all required fields. It also
involves verifying that data within a given record
is consistent, e.g. when a payment type field indi-
cates that a credit card was used, the correspond-
ing credit card number field has been entered.

Overview of Data Validation
There are a number of ways that data validation
can be implemented. If a database server is being
used (e.g. InterBase, Oracle, or Microsoft SQL
Server), you can define constraints and triggers
on the server. Server-based validation ensures
that all applications storing information on the
server must abide by the rules defined there. If
the data is being accessed in an n-tier environ-
ment, such as that supported by Inprise’s
MIDAS (Multi-tier Distributed Application
Services) technology, these business rules can be
defined on the application server. Finally, it’s
possible to define the data validation rules on
the individual client applications.

Each of these approaches has its advantages and
disadvantages. For example, placing business
rules on the database (whether it’s a remote
database or a local one) has the advantage that
the rules are applied regardless of how the data
is being added to the database. Whether the
data is coming from client applications in a
client/server environment, being inserted from
an application server, or being imported directly
to the database, these rules are respected. The
drawback to this approach is that any change to
the back end requires all data-based triggers and
constraints to be redefined for the new server,
e.g. when your company replaces Microsoft
SQL Server with Oracle.

The advantage of storing the rules on the appli-
cation server is that all thin-client applications
using the application server will use the rules.
The drawback is that the rules are not enforced
until the client application sends the user’s data
updates. This may occur after the user has made
numerous inserts, updates, or deletions. If the
user has repeatedly violated the same business
rule, this may not be discovered until after the
user has made extensive invalid edits.

Client-side validation can be used in any situa-
tion, including those stand-alone applications
that don’t involve a database server or an appli-
cation server. Furthermore, client-side validation
can be applied without involving a network
round trip. The drawback to client-side valida-
tion is that it must be repeated for each client
application. This introduces the potential for
inconsistent application of business rules.
Likewise, client-side validation involves binding
the user interface to business logic, an associa-
tion many developers want to avoid.

DBNavigator
From a maintenance standpoint, it’s ideal when all validation can
be placed in only one of these three layers. In reality, though,
effective validation often involves placing it in several layers. For
example, although a majority of business rules may be applied at
an application server layer, it might be desirable to create some val-
idation on the client to decrease network traffic. Likewise, a pri-
mary key on a remote database table has the effect of reinforcing
record uniqueness — regardless of rules defined in other layers.

Writing triggers and constraints on the database server is a
server-specific topic. For information on applying business rules
at this layer, refer to your database documentation. Writing
business rules for the application server layer is a MIDAS
topic. You can find some discussion of these issues in Bill
Todd’s article “Delphi 4 Multi-tier Techniques” in the January,
1999 issue of Delphi Informant, as well as the online Help.
The remainder of this article focuses on the application of client-
side validation.

Validating Data on the Client
Client-side validation is that which is defined in your Delphi
application with which the user interacts. In general, there are
four types of client-side validation: keystroke-level, field-level,
record-level, and database-level. Keystroke-level validation
involves accepting or rejecting individual keystrokes. Field-level
validation is applied as each field is entered into a record.
Record-level validation occurs when an individual record is
being posted. Database-level validation is applied to sets of
records as they are being applied to the underlying database.
Each of these types of validation is introduced separately in the
following sections.

Keystroke-level Validation
Keystroke-level validation involves evaluating each character as
it is entered into a field, and the rejection of those characters
that are invalid. There are two ways to apply keystroke-level
validation:

Write an event handler that executes after each character is
entered, and raise an exception (silent or otherwise) when an
invalid character is encountered.
Use the EditMask property of a TField.

Writing an event handler to evaluate every keystroke entered by
the user is the most intrusive of all data validation, and is there-
fore the least often used. This type of validation is usually
achieved by adding an OnKeyPress event handler to an individual
DBEdit control (or similar single-field data control), and evaluat-
ing each character as it is entered. This typically means that even
if the field is displayed in a DBGrid (or some other multi-field
control), the user is not permitted to edit it there. Instead, the
user is required to select from a menu or click a button to dis-
play a modal dialog box in which the single field control appears.
(A modal dialog box is one that must be accepted before the user
can return to the form from which the dialog box was invoked.)
Only after an acceptable value has been entered is the underlying
field updated by your code.

A more common, and more easily applied form of keystroke-level
validation involves the use of an edit mask. An edit mask is a
pattern defined for an individual TField. At run time, Delphi
ensures that only characters the mask permits are accepted. Any
character not conforming to the mask is automatically rejected,
without raising an exception.
32 May 1999 Delphi Informant
In addition to simply rejecting or accepting characters, edit masks
can also be used to perform run-time case conversions of character
data. For example, using an edit mask, you can ensure that a partic-
ular sequence of characters is accepted as upper-case characters, even
if the user entered them in lower case.

To create an edit mask, you must either instantiate TField descen-
dants for your fields at design time (by right-clicking your DataSet
component and using the Fields Editor to instantiate the fields), or
you must assign the EditMask property of a TField at run time
(using either a DataSet’s Fields property or FieldByName method).
Using design-time instantiated fields is the easiest, because it permits
the property to be configured at design time.

The following is a simple edit mask:

>LL<

The > and < parts of this mask convert the entered characters into
upper case, while the two LL characters require that exactly two
letters be entered. This mask is useful for applications requiring
the entry of a US state name abbreviation. While this technique
doesn’t ensure a valid state abbreviation is entered, it does ensure
it’s in the correct form.

Field-level Validation
Field-level validation involves evaluating the contents of an indi-
vidual field as its value is being updated in the underlying record
buffer. The record buffer is a holding area that stores an image of
a record while it’s being edited. It allows the user to modify a
record in memory without affecting the underlying database as
each field (column) is updated.

If a user enters invalid data into a field for which field-level vali-
dation is defined, they are prohibited from leaving the field until
the data is corrected. While not as intrusive as keystroke-level
validation, field-level validation tends to interrupt the flow of the
user’s work.

There is only one way to provide field-level validation with
Delphi. This technique involves adding an OnValidate event han-
dler to the TField associated with the field for which validation is
needed. From within this event handler, you evaluate the contents
of the field. If your code determines the value is invalid, you raise
an exception. Raising an exception within an OnValidate event
handler has the effect of preventing the value entered into the
field from being updated to the underlying buffer. Furthermore,
whatever action the user was attempting to perform is prevented,
whether it’s navigation to a different field in the same record, or
some action that would have otherwise resulted in the current
record being posted. Only after the user corrects the invalid data
are they permitted to proceed.

Field-level validation is demonstrated in the VALID project
(available for download; see end of article for details.) The pro-
ject’s main form, shown in Figure 1, contains a table, named
Table1, that demonstrates a variety of validation techniques. All
fields for this table were instantiated at design time using the
Fields Editor. To display the Fields Editor, right-click the Table
component and select Fields Editor. To instantiate TField compo-
nents for each field associated with the table, press CA. (In
versions of Delphi before Delphi 4, you must right-click the
Fields Editor and select Add Fields. This results in the display of

 main form of the VALID project.

DBNavigator
the Add Fields dialog box, wherein you select all
field names and press R).

When the fields have been instantiated, select the field
to which you want to add field-level validation, and
add an OnValidate event handler. The following is the
OnValidate event handler added to the Company field
from the VALID project:

procedure TForm1.Table1CustNoValidate(Sender:

TField);

begin
if CustNo.AsInteger < 1000 then

raise EInvalidCustNoException.Create(

'Customer numbers must be greater than

1000');

end;

From within this event handler, the value of the
Customer number field, CustNo, is evaluated. If the
value of this field is less than 1000, an exception is
raised. As a result, the user is prevented from entering a value that
is not one of the acceptable values. Furthermore, because this vali-
dation is applied at the field level, the user cannot continue to
work with the record until this invalid value is correct.

There is another feature of this code worth noting. Specifically,
instead of raising a generic exception, a custom exception was
raised. This exception was defined by the following statements,
which appear in a type clause in the project’s main form unit:

ECustomException = class(Exception);
EInvalidCustNoException = class(ECustomException);

In general, whenever you raise an exception in code, it’s consid-
ered good form to raise a custom exception, i.e. one defined by
you. Doing so permits any future exception handling code you
add to distinguish between exceptions raised by you and those
generated by Delphi’s components. In this case, a class named
ECustomException is defined, and all explicitly raised exceptions
are declared to descend from it.

Record-level Validation
Record-level validation is used to prevent a record from being
posted when it contains invalid data. Unlike keystroke-level and
field-level validation, the user is not prevented from entering
invalid data. Indeed, a user may move freely throughout a record,
entering invalid data all over the place. Before the user can post
the record, however, this invalid data must be corrected. While
some may argue this is not efficient, imagine how difficult it
would be for you to complete a written form, such as your
income taxes, one field at a time, with each field needing to be
correct before you could continue to the next.

Delphi provides three ways to create record-level validation. Two
involve properties, and one makes use of an event handler. Each of
these is discussed in the following sections.

Before doing so, however, a comment is in order. The first two
techniques, constraints and the Required property, can be applied
at the field level. This might lead you to treat them as field-level
validation, but doing so is incorrect. Field-level validation is
applied on a field-by-field basis, which occurs during navigation,
but does not necessarily involve the current record being posted.

Figure 1: The
33 May 1999 Delphi Informant
These techniques are clearly examples of record-level validation,
because the rules you define are only applied if the corresponding
record is being posted.

Constraints
Constraints permit you to define Boolean SQL statements that are
executed before the record is posted. If the expression evaluates to
False, an internal exception is raised, preventing the record from
being posted.

There are two ways to place constraints. You can use the
CustomConstraint string property of individual TField compo-
nents, or the Constraints TCheckConstraints property of your
TTable or TQuery components. (TStoredProc components don’t
have a Constraints property. Furthermore, do not confuse this
Constraints property with the TControl.Constraints TSizeConstraints
property, which controls the size of visible components.)

The example project VALID employs the CustomConstraint prop-
erty to ensure the Contact field isn’t left blank. The value of the
CustomConstraint property for the Table1Contact TField is
“Contact IS NOT NULL.” When a record is being posted, and
one of the TField CustomConstraint SQL expressions evaluates to
False, an exception is raised, and the string associated with the
TField ’s ConstraintErrorMessage is displayed to the user. In this
example, the ConstraintErrorMessage property contains the string
“You must enter a contact name.”

Using the CustomConstraint property requires you either instanti-
ate TFields at design time, or assign this property to TFields at run
time. By comparison, the Constraints property for TTable and
TQuery components permits you to define one or more constraints
without working with individual TFields. The Constraints property
contains one or more Constraint objects, each of which defines a
CustomConstraint and an ErrorMessage. (The Constraints property
also permits you to import constraints defined by a remote server.
This is a useful feature for propagating server-side constraints to
the client side, which can reduce network traffic. Using imported
constraints is outside the scope of this article.)

You add a constraint to the Constraints property by displaying the
Constraints property editor, shown in Figure 2. After the
Constraints property editor is displayed, click the Add New

DBNavigator

Figure 2: The Constraints property editor.

Figure 3: The error message displayed when a required
field is left blank.
button and define a CustomConstraint and an ErrorMessage
string for the new Constraint. You can add as many constraints
as you like, and each constraint can reference one or more fields
in the table or query.

In the VALID project, a single constraint is added to Table1’s
Constraints property. The value of the CustomConstraint property of
this constraint is “(Country = ‘US’) AND NOT (State IS NULL).”
When this expression returns False, the following error message is
displayed to the user: “When Country is US you must supply a
value for the State field.”

The Required Property
The example of a TField.CustomConstraint property in the preceding
section demonstrates how to require a user to supply a value for a
field. However, there is an easier way of doing this. Instead, simply
set the Required property of a TField to True. This will cause Delphi
to verify that the associated field has been assigned a value before
permitting the record to be posted. If the field is null, Delphi raises
an exception and displays an error message.

The Table1 Company field in the VALID project has the Required
property set to True. If you attempt to enter a new Customer record
and fail to enter a value in the Company field, the error message
shown in Figure 3 is displayed.

Because setting the Required property is easier than defining a
CustomConstraint for a field, you might wonder why I introduced
Constraints first. The answer is that the error message displayed by
Delphi when a Required field is left blank is automatically gener-
ated. By comparison, when you define a CustomConstraint, you
also get to define the ConstraintErrorMessage property, permitting
you to control the text of the message displayed to the user.

BeforePost
While constraints and the Required property are useful, the most
flexible technique is to write a BeforePost event handler for your
datasets. From a BeforePost event handler, you can evaluate any
34 May 1999 Delphi Informant
value in the current record, as well as examine data in other
datasets, before deciding if the record is valid. If you determine
the record is valid, you do nothing, and permit the default post-
ing behavior to execute. If your code finds the record is invalid,
you raise an exception, which has the effect of preventing the
record from being posted.

Following is an example of code that appears in the VALID project.
This code uses a second Table component to point to the Customer
table; however, this one is sorted by Company name. If the record is
being posted in an inserted record, this code verifies that the
Company name doesn’t already appear in the database. If it does, a
custom exception is raised, and an error message describing the
problem is displayed:

procedure TForm1.Table1BeforePost(DataSet: TDataSet);

begin
if Table1.State = dsInsert then

if Table2.FindKey([Table1Company.AsString]) then
raise EDuplicateCustomer.Create(

Table1Company.AsString +

' is already in the Customer table');

end;

This code demonstrates that you can reference multiple tables
from a BeforePost event handler. However, it’s unlikely you would
write this specific test. Company name uniqueness can be
assured using a unique index. Also, in some databases it might be
perfectly valid to have two companies with the same name. This
database would otherwise permit such a duplication because
record uniqueness is ensured through the use of a unique
Customer number.

Database-level Validation
Client-side database-level validation involves caching the user’s
edits to two or more records, then evaluating this work before
permitting it to become a permanent part of the database.
Unlike the other types of validation described here, database-
level evaluation can involve data in multiple tables. A complete
discussion of database-level evaluation is beyond the scope of
this article. Therefore, this section will serve to describe the
basic approach.

There are two parts to database-level validation. The first is that
all changes, including inserts, deletions, and modifications, must
be cached on the client side until validation is ready to take
place. This can be accomplished in one of two ways. You can use
cached updates or the TClientDataSet component. Cached
updates can be used by any Delphi developer using Delphi 2 or
later. The TClientDataSet component is only available in the
client/server versions of Delphi 3 and 4. (I hope borland.com
will make this tremendously useful component available in all
versions of Delphi with Delphi 5.)

The second part of database-level validation is that when changes
are applied, either from cache or from a client dataset, they are
done without the context of a transaction. The transaction, which
is applied using a TDatabase, permits all the user’s edits to be can-
celled, if necessary.

Conclusion
Client-side validation permits your code to evaluate data before
it’s applied to the underlying database, and to reject values that

DBNavigator
are not acceptable. While not appropriate for all applications,
client-side validation nonetheless deserves a place in the reper-
toire of all Delphi database developers. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\MAY \DI9905CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database development
company. He is co-author of 17 books, including Oracle JDeveloper [Oracle Press, 1998],
JBuilder Essentials [Osborne/McGraw-Hill, 1998], and Delphi in Depth [Osborne/McGraw-Hill,
1996]. He is a Contributing Editor of Delphi Informant, and is an internationally respected
trainer of Delphi and Java. For information about Jensen Data Systems consulting or training
services, visit http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.
35 May 1999 Delphi Informant

http://idt.net/~jdsi

File | New
Directions / Commentary
Delphi on the Web: Off the Beaten Path

Last month we examined some general sites of interest to Delphi developers. This month, we’ll examine some
Delphi sites you may not know about: sites devoted to components, tools, techniques, and/or code; news sites;

and special interest sites.
Developer’s Corner Journal (http://www.dcjournal.com) is similar to
some of the Pascal sites we examined last month. However, this site
focuses on two Inprise tools: Delphi and C++Builder. Particularly
rich in content, DCJ includes sections on beginners’ issues, the
Windows GUI, Internet programming, experts, database develop-
ment, and much more.

Brad Stowers’ Delphi Free Stuff (http://www.delphifreestuff.com)
is just that. It includes over a dozen of Brad’s components, as well
as those of other developers. It also includes links, experts, tips,
and examples demonstrating advanced techniques, including work-
ing with the Windows API. There’s an open invitation and willing-
ness to provide a home for other “freeware components that need a
distribution point.”

Conrad Herrmann’s DAX FAQs at http://pweb.netcom.com/
~cherrman/daxfaqs.htm is devoted to Delphi’s ActiveX capabilities. It
includes information and code examples related to Delphi’s ActiveX
Class Framework, covering Delphi 3 and 4. It covers bugs in IE4.01
and Delphi 3.02, as well as work-arounds.

The Delphi Pages at http://www.delphipages.com is an attractive
site with a wealth of tools. The Delphi News portion, central to
the site, is excellent. It includes pages devoted to applications,
tips, components, chat, a Delphi forum, links, and more.

Delphi user groups can be an effective means of sharing informa-
tion and programming techniques. But what about those who don’t
live close enough to such a group to participate? Enter the Virtual
Delphi User Group, located at http://balticsolutions.com/vdug.
VDUG provides a number of useful services. In addition to its
monthly newsletters, it provides information on Delphi compo-
nents and Internet sites.

The Search Site for Software Developers at http://developers.href.com
is indispensable for Delphi developers. It provides a powerful means
to search many Usenet and vendor newsgroups. You can find informa-
tion on obscure topics, assessments of programming tools, and
answers to tough questions. It also provides access to files on the
Delphi Super Page and links to other top sites.

Richey’s Delphi-Box at http://inner-smile.com/delphi4.htm con-
tains a wealth of information and links. In addition to the
expected links to Web sites, FTP sites, and Inprise sites, there are
sections devoted to less-usual topics: Delphi user groups and
Delphi job offers.
36 May 1999 Delphi Informant
Would you like to be an advocate for Delphi? Check out The
Delphi Advocacy Group at http://www.tdag.org. They define them-
selves as Delphi users and professionals who promote the most
advanced Windows development tool.

You may recall my partner in the TAPI articles, Major Ken Kyler (see
the July, August, and September 1998 issues of Delphi Informant).
Ken is sponsoring new lists: a Delphi moderated list, a moderated
Delphi Database list, Delphi Talk, and more. You can find out how to
subscribe at http://www.kyler.com. His page includes information on
Web page authoring, technical writing, and other topics.

The Tomes of Delphi Support Site at http://www.cyberramp.
net/~jayres/ is a lot more than its title suggests. It does, of course,
provide a good deal of updates and information related to the
important series of books of which John Ayers (the owner of the
site) is the principle author. But the most impressive aspect is an
exhaustive page of links to third-party tools.

Advanced Delphi Programming at http://members.tripod.com/
~delphipower/index.htm is also worth visiting. It has information on
several 32-bit Delphi programming topics, such as working with shell
extensions in Delphi; displaying the Properties page for a file, folder, or
drive; and using SHFileOperation to copy files in Delphi.

Last year, I discussed Project Jedi, a project to develop and make avail-
able conversions of Windows APIs otherwise unavailable to Delphi
developers. Of course, the Project Jedi site at http://www.delphi-jedi.org
has information on this important endeavor. But the site also includes a
good deal of additional information and links. There is an excellent
tutorial written by Andreas Prucha on converting C headers; it provides
a wealth of information on this difficult topic. This site also includes
links to user groups and an interview with John Ayers.

I hope to revisit this important topic. In the meantime, I continue
to invite your helpful input. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years. He
has published a number of articles in various technical journals. Using
Delphi, he specializes in writing custom components and implementing
multimedia capabilities in applications, particularly sound and music. You
can reach Alan on the Internet at acmdoc@aol.com.

http://www.dcjournal.com
http://www.delphifreestuff.com
http://pweb.netcom.com/~cherrman/daxfaqs.htm
http://pweb.netcom.com/~cherrman/daxfaqs.htm
http://www.delphipages.com
http://balticsolutions.com/vdug
http://developers.href.com
http://inner-smile.com/delphi4.htm
http://www.tdag.org
http://www.kyler.com
http://www.cyberramp.net/~jayres/
http://www.cyberramp.net/~jayres/
http://members.tripod.com/~delphipower/index.htm
http://members.tripod.com/~delphipower/index.htm
http://www.delphi-jedi.org

	Table of Contents
	Delphi Tools
	20/20 Software Releases softSENTRY 2.1
	HyperAct Announces eAuthor Help 3.10
	Davis Business Systems and Psi Computer Consultants Offer BS/1 Small Business
	Realsoft Releases SofTrak
	MathTools Announces MIDEVA
	Watergate Announces ActiveX and CGI in PC-Doctor
	RightDoc Releases RightDoc 1.0
	Linder Software and Albert’s Ambry Announce LSPzip

	Delphi News
	InterBase Releases InterBase 5.5 for SCO
	Inprise Strengthens AS/400 Global Partnership with SystemObjects
	HREF Presents Live eSeminars
	Oracle Expands Relationship with Inprise for VisiBroker CORBA
	Inprise Creates Separate Divisions
	SkyLine Tools Announces the Programmer of The Year Award

	On the Cover
	OOP Frameworks
	The Template Method Pattern
	Template Method vs. Abstract Class
	Method Types
	Implementing Application Frameworks
	Defining the Abstract TViewForm
	Creating a TViewFormSubclass
	Creating the Shell Application
	Conclusion
	Begin Listing One — TViewForm
	Begin Listing Two — TViewForm2
	Begin Listing Three — The Shell Application

	Undocumented
	Finding Files
	Finding Computers
	Browsing for Files
	Displaying Object Properties
	Networking
	Shutting Down the System
	Out of Memory!
	Out of Space!
	Generic Shell Message Boxes
	Componentization
	Browsing Magic
	Conclusion

	Algorithms
	Exhausting Work
	Planar Postulates
	Fact 1
	Fact 2
	Five-coloring
	Conclusion
	Begin Listing One — AssignColors
	Begin Listing Two — TRegion

	On the 'Net
	Interfaces
	THTMLBase
	THTMLContainer
	Generating HTML
	THTMLDocument
	Merging Documents
	Data Tables
	Error Reporting
	Delphi 4 Bonuses
	Lazy Wrappers
	Demonstration
	Conclusion

	DBNavigator
	Overview of Data Validation
	Validating Data on the Client
	Keystroke-level Validation
	Field-level Validation
	Record-level Validation
	Constraints
	The RequiredProperty
	BeforePost
	Database-level Validation
	Conclusion

	File I New

